精英家教网 > 高中数学 > 题目详情
已知a>b>0,ab=1,则
a2+b2
a-b
的最小值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:本题是基本不等式问题,可以利用a>b>0得到a-b>0(正数),再利用条件ab为定值将a2+b2转化为(a-b)2与ab,化简后,运用基本不等式解决问题.
解答: 解:∵a>b>0,ab=1∴a-b>0 
a2+b2
a-b
=
(a-b)2+2ab
a-b
=(a-b)+
2
a-b
≥2
(a-b)
2
a-b
=2
2

当且仅当a-b=
2
时取等号
故答案为2
2
点评:本题主要考查了基本不等式的应用和转化化归的数学思想,注意不等式成立的条件(一正二定三相等)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC=2,∠B=30°,P为BC边中线上的任意一点,则
CP
BC
的值为(  )
A、-12B、-6C、6D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

某班研究性学习小组在今年11月11日“双11购物节”期间,对[25,55)岁的人群随机抽取了1000人进行了一次是否参加“抢购商品”的调查,得到如下统计表和各年龄段人数频率分布直方图.
组数分组抢购商品
的人数
占本组
的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55]150.3
(Ⅰ)求统计表中a,p的值;
(Ⅱ)从年龄在[40,50)岁参加“抢购商品”的人群中,采用分层抽样法抽取9人参满意度调查,其中3人感到满意,记感到满意的3人中年龄在[40,50)岁的人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一年级共有320人,为调查高一年级学生每天晚自习自主支配学习时间(指除了完成老师布置的作业后学生根据自己的需要进行学习的时间)情况,学校采用随机抽样的方法从高一学生中抽取了n名学生进行问卷调查.根据问卷得到了这n名学生每天晚自习自主支配学习时间的数据(单位:分钟),按照以下区间分为七组:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到频率分布直方图如图.已知抽取的学生中每天晚自习自主支配学习时间低于20分钟的人数是4人.
(1)求n的值;
(2)若高一全体学生平均每天晚自习自主支配学习时间少于45分钟,则学校需要减少作业量.根据以上抽样调查数据,学校是否需要减少作业量?(注:统计方法中,同一组数据常用该组区间的中点值作为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆x2+y2+2x-4y=0的圆心,且与直线2x+3y=0垂直的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的底面为菱形,其三视图如图所示,则这个四棱锥的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数x,y满足3x+y=5xy,则4x+3y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,向量
p
=(2b-c,cosC),
q
=(2a,1),且
p
q

(Ⅰ)求A;
(Ⅱ)求函数f(C)=1-
2cos2C
1+tanC
的值域.

查看答案和解析>>

同步练习册答案