精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点在轴上,长轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆两点,求证:为定值.

(1);(2)证明见解析.

解析试题分析:(1)已知椭圆的长轴长,就是已知,那么在椭圆的标准方程中还有一个参数,正好椭圆过点,把这个点的代入椭圆标准方程可求出,得椭圆方程;(2)这是直线与椭圆相交问题,考查同学们的计算能力,给定了直线的方向向量,就是给出了直线的斜率,只要设动点的坐标为,就能写出直线的方程,把它与椭圆方程联立方程组,可求出两点的坐标,从而求出的值,看它与有没有关系(是不是常数),当然在求时,不一定要把两点的坐标直接求出(如直接求出,对下面的计算没有帮助),而是采取设而不求的思想,即设,然后求出,而再把表示出来然后代入计算,可使计算过程简化.
试题解析:(1) 因为的焦点在轴上且长轴为
故可设椭圆的方程为),      (1分)
因为点在椭圆上,所以,         (2分)
解得,    (1分)
所以,椭圆的方程为.              (2分)
(2)设),由已知,直线的方程是,   (1分)
  (*)    (2分)
,则是方程(*)的两个根,
所以有,,         (1分)
所以,


(定值).      (3分)
所以,为定值.         (1分)
(写到倒数第2行,最后1分可不扣)
考点:(1)椭圆的标准方程;(2)直线与椭圆相交问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点,动点轴上的正射影为点,且满足直线.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆与双曲线有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线于M、N两点,且
(1)求椭圆E的方程;
(2)设P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为为椭圆上的四个点。
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求四边形的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,动点G满足
(Ⅰ)求动点G的轨迹的方程;
(Ⅱ)已知过点且与轴不垂直的直线l交(Ⅰ)中的轨迹于P,Q两点.在线段上是否存在点,使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且(O为坐标原点),求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程.

查看答案和解析>>

同步练习册答案