11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{x}$£¨x¡Ù0£©£¬ÊýÁÐ{an}¡¢{bn}Âú×ãa1=1£¬b1=1£¬ÇÒ¶ÔÈÎÒân¡ÊN+£¬¾ùÓÐan+1=$\frac{{a}_{n}f£¨{a}_{n}£©}{f£¨{a}_{n}£©+2}$£¬bn+1-bn=$\frac{1}{{a}_{n}}$£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄµÈ²îÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨3£©¶ÔÓڦˡÊ[0£¬1]£¬ÊÇ·ñ´æÔÚk¡ÊN+£¬Ê¹µÃµ±n¡Ýk£¬µ±bn¡Ý£¨1-¦Ë£©f£¨an£©ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÊÔÇókµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬ÓÉf£¨x£©=$\frac{1}{x}$£¬an+1=$\frac{{a}_{n}f£¨{a}_{n}£©}{f£¨{a}_{n}£©+2}$£¬¿ÉµÃ$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2£¬¼´¿ÉÖ¤Ã÷ÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄµÈ²îÊýÁУ»
£¨2£©ÓÉ£¨1£©¿ÉµÃ$\frac{1}{{a}_{n}}$=1+2£¨n-1£©=2n-1£¬¿ÉµÃÊýÁÐ{an}µÄͨÏʽ£»ÔÙÓÉbn+1-bn=$\frac{1}{{a}_{n}}$£¬ÀûÓÃÀۼӵķ½·¨£¬½áºÏµÈ²îÊýÁÐÇóºÍ¹«Ê½¼´¿ÉËã³öbnµÄ±í´ïʽ£»
£¨3£©¸ù¾Ý{an}¡¢{bn}µÄͨÏʽ£¬½«²»µÈʽbn¡Ý£¨1-¦Ë£©f£¨an£©»¯¼òÕûÀíµÃ£¨2n-1£©¦Ë+n2-4n+3¡Ý0£¬Òò´ËÉèg£¨¦Ë£©=£¨2n-1£©¦Ë+n2-4n+3Ϊ¹ØÓڦ˵ÄÒ»´Îº¯Êý£¬Ô­²»µÈʽºã³ÉÁ¢µÈ¼ÛÓÚ$\left\{\begin{array}{l}{g£¨0£©¡Ý0}\\{g£¨1£©¡Ý0}\end{array}\right.$£¬½âÖ®¿ÉµÃn¡Ü1»òn¡Ý3£®Óɴ˿ɵôæÔÚÕýÕûÊýkµÄ×îСֵΪ3£¬Âú×ãµ±n¡Ýkʱbn¡Ý£¨1-¦Ë£©f£¨an£©ºã³ÉÁ¢£®

½â´ð £¨1£©Ö¤Ã÷£ºÓÉf£¨x£©=$\frac{1}{x}$£¬an+1=$\frac{{a}_{n}f£¨{a}_{n}£©}{f£¨{a}_{n}£©+2}$£¬¿ÉµÃ$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2£¬
¡àÊýÁÐ{$\frac{1}{{a}_{n}}$}¹¹³ÉÒÔ1ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ»
£¨2£©½â£ºÓÉ£¨1£©¿ÉµÃ$\frac{1}{{a}_{n}}$=1+2£¨n-1£©=2n-1£¬
¡àan=$\frac{1}{2n-1}$£¬
¡ßbn+1-bn=$\frac{1}{{a}_{n}}$=2n-1£¬
¡àbn=b1+£¨b2-b1£©+£¨b3-b2£©+¡­+£¨bn-bn-1£©
=1+£¨1+3+5+¡­+2n-3£©=n2-2n+2£¬
×ÛÉÏËùÊö£¬{an}µÄͨÏʽΪan=$\frac{1}{2n-1}$£¬{bn}µÄͨÏʽΪbn=n2-2n+2£®
£¨3£©½â£º¶ÔÓڦˡÊ[0£¬1]ʱ£¬bn¡Ý£¨1-¦Ë£©f£¨an£©ºã³ÉÁ¢£¬
µÈ¼ÛÓڦˡÊ[0£¬1]ʱ£¬n2-2n+2¡Ý£¨1-¦Ë£©£¨2n-1£©ºã³ÉÁ¢£¬
¼´£¨2n-1£©¦Ë+n2-4n+3¡Ý0ÔڦˡÊ[0£¬1]ʱºã³ÉÁ¢£¬
Éèg£¨¦Ë£©=£¨2n-1£©¦Ë+n2-4n+3£¬¿ÉµÃ$\left\{\begin{array}{l}{g£¨0£©¡Ý0}\\{g£¨1£©¡Ý0}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{{n}^{2}-4n+3¡Ý0}\\{{n}^{2}-2n+2¡Ý0}\end{array}\right.$£¬½âÖ®µÃn¡Ü1»òn¡Ý3£®
Óɴ˿ɵôæÔÚk¡ÊN*£¬Ê¹µÃµ±n¡Ýkʱ£¬bn¡Ý£¨1-¦Ë£©f£¨an£©ºã³ÉÁ¢£¬kµÄ×îСֵΪ3£®

µãÆÀ ±¾Ìâ¸ø³öº¯Êý¹ØÏµÊ½£¬ÇóÊýÁÐÁÐ{an}¡¢{bn}µÄͨÏʽ£¬²¢ÌÖÂÛ²»µÈʽºã³ÉÁ¢µÄÎÊÌ⣮×ÅÖØ¿¼²éÁ˵ȲîÊýÁеÄͨÏîÓëÇóºÍ¹«Ê½¡¢Ò»´Îº¯ÊýµÄͼÏóÓëÐÔÖʺͲ»µÈʽºã³ÉÁ¢µÄ´¦ÀíµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÓÐÒ»¸ö½ÇΪ60¡ãµÄ¶Û½ÇÈý½ÇÐΣ¬Âú×ã×î´ó±ßÓë×îС±ßÖ®±ÈΪm£¬ÔòmµÄȡֵ·¶Î§Îª£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÉèÕýÏîÊýÁÐ{an}µÄǰnÏîºÍÊÇSn£¬Èô{an}ºÍ{$\sqrt{{S}_{n}}$}¶¼ÊǵȲîÊýÁУ¬{an}µÄ¹«²îΪd£¬ÊýÁÐ{$\sqrt{{S}_{n}}$}µÄ¹«²îΪ$\frac{d}{8}$£¬Ôòa1+d=48£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÈý½ÇÐÎABCÖУ¬µãA£¬BµÄ×ø±ê·Ö±ðΪA£¨3£¬0£©£¬B£¨0£¬3£©£¬ÈôµãC£¨1£¬t£©£¬¡ÏBÊǶ۽ǣ¬ÔòtµÄȡֵ·¶Î§Îªt£¾4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®8ÃûѧÉúºÍ2λÀÏʦվ³ÉÒ»ÅźÏÓ°£¬2λÀÏʦǡºÃÏàÁÚµÄÅÅ·¨ÖÖÊýΪ£¨¡¡¡¡£©
A£®A${\;}_{9}^{9}$A${\;}_{2}^{2}$B£®A${\;}_{9}^{9}$C£®A${\;}_{10}^{10}$D£®2A${\;}_{10}^{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ò»¸ö²»Í¸Ã÷µÄºÐ×ÓÖÐ×°ÓÐ4¸öÍêÈ«ÏàͬµÄСÇò£¬ÇòÉÏ·Ö±ð±àÓÐÊý×Ö1¡¢2¡¢3¡¢4£®
£¨1£©ÈôÖð¸ö²»·Å»ØÈ¡ÇòÁ½´Î£¬ÇóµÚÒ»´ÎÈ¡µ½ÇòµÄ±àºÅΪżÊýÇÒÁ½¸öÇòµÄ±àºÅÖ®ºÍÄܱ»3Õû³ýµÄ¸ÅÂÊ£»
£¨2£©ÈôÏÈ´ÓºÐÖÐËæ»úȡһ¸öÇò£¬¸ÃÇòµÄ±àºÅΪa£¬½«Çò·Å»ØºÐÖУ¬È»ºóÔÙ´ÓºÐÖÐËæ»úȡһ¸öÇò£¬¸ÃÇòµÄ±àºÅΪb£®
¢ÙÇóʹµÃº¯Êýf£¨x£©=asinx+bcosxµÄ×î´óֵСÓÚ4µÄ¸ÅÂÊ£»
¢ÚÇóʹµÃÏòÁ¿$\overrightarrow{m}$=£¨2a-6£¬2£©Óë$\overrightarrow{n}$=£¨3-2b£¬-1£©¼Ð½ÇΪ¶Û½ÇµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÊýÁÐ{an}Êǹ«²î²»ÎªÁãµÄµÈ²îÊýÁУ¬a1=1ÇÒa1£¬a3£¬a9³ÉµÈ±ÈÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èô${b_n}={4^{a_n}}+2{a_n}$ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=-$\frac{1}{2}$x2+x£¬ÊÇ·ñ´æÔÚʵÊým£¬n£¨m£¼n£©£¬Ê¹µÃµ±x¡Ê[m£¬n]ʱ£¬º¯ÊýµÄÖµÓòΪ[2m£¬2n]£¬Èô´æÔÚ£¬Çó³öm£¬nµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺£¨a3+a-3£©£¨a3-a-3£©¡Â[£¨a4+a-4+1£©£¨a-a-1£©]£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸