精英家教网 > 高中数学 > 题目详情
1.计算:(a3+a-3)(a3-a-3)÷[(a4+a-4+1)(a-a-1)].

分析 分别根据立方和和立方差公式平方差公式完全平方公式化简计算即可.

解答 解:(a3+a-3)(a3-a-3
=(a+a-1)(a2+a-2-1)(a-a-1)(a2+a-2+1),
=(a+a-1)(a-a-1)[(a2+a-2-1)(a2+a-2+1)],
=(a+a-1)(a-a-1)(a4+a-4+2-1)=(a+a-1)(a-a-1)(a4+a-4+1),
所以:(a3+a-3)(a3-a-3)÷[(a4+a-4+1)(a-a-1)]=a+$\frac{1}{a}$

点评 本题考查了立方和和立方差公式平方差公式完全平方公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{x}$(x≠0),数列{an}、{bn}满足a1=1,b1=1,且对任意n∈N+,均有an+1=$\frac{{a}_{n}f({a}_{n})}{f({a}_{n})+2}$,bn+1-bn=$\frac{1}{{a}_{n}}$.
(1)证明:数列{$\frac{1}{{a}_{n}}$}的等差数列;
(2)求数列{an}、{bn}的通项公式;
(3)对于λ∈[0,1],是否存在k∈N+,使得当n≥k,当bn≥(1-λ)f(an)恒成立?若存在,试求k的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.甲,乙两选手进行象棋比赛,假设每局比赛甲获胜的概率为$\frac{2}{3}$,乙胜概率为$\frac{1}{3}$,若采取3局2胜制,甲获胜的概率是$\frac{20}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求y=$\frac{6\sqrt{{x}^{2}+1}}{{x}^{2}+4}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2
(1)求f(0)
(2)求f($\frac{2015}{2}$)
(3)画y=f(x)草图
(4)求y=f(x)与y=log5x图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,已知抛物线x2=y的焦点为F,点P1(1,1),Qn(n,n2)(n∈N*),连接OP1,作抛物线的切线l1,使之与直线OP1平行,所得切点记为P2(a2,a${\;}_{2}^{2}$)再作抛物线的切线l2,使之与直线OP2平行,所得切点记为P3(a3,a${\;}_{3}^{2}$)…以此类推,得到数列{an},若a1=1,数列{bn}满足|QnF|=nbn+$\frac{1}{4}$,则数列{anbn}的前n项和为(  )
A.(n-1)•2n+1B.$\frac{n+2}{{2}^{n-1}}$-2C.$\frac{2-n}{{2}^{n-1}}$D.4-$\frac{n+2}{{2}^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设集合P={x||x-5|≤3},Q={x|5-m≤x≤5+m,m>0}
(1)若“x∈P”是“x∈Q”的充分不必要条件,求实数m的取值范围;
(2)若“x∈P”是“x∈Q”的充要条件,求实数m的取值范围;
(3)若“x∈P”是“x∈Q”的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,椭圆C的两个焦点分别为F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),离心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的标准方程.
(Ⅱ)设直线y=kx+1与椭圆C交于A,B两点.k为何值时OA⊥OB?此时线段AB的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为Sn,若Sn=2n+1,则a3=4.

查看答案和解析>>

同步练习册答案