精英家教网 > 高中数学 > 题目详情
15.在△ABC中,R为△ABC外接圆半径,若$\frac{a}{cosA}$=$\frac{b}{cosB}$,则△ABC是等腰三角形.

分析 先根据正弦定理将边的关系变为角的关系,进而再由两角和与差的正弦公式确定A=B得到三角形是等腰三角形.

解答 解:在△ABC中,∵R为△ABC外接圆半径,由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$=$\frac{c}{sinC}=2R$,
可得:a=2RsinA,b=2RsinB,
∴由$\frac{a}{cosA}$=$\frac{b}{cosB}$,得:$\frac{sinA}{cosA}=\frac{sinB}{cosB}$.
∴sinAcosB=cosAsinB,
∴sin(A-B)=0,解得:A=B.
∴△ABC是等腰三角形.
故答案为:等腰三角形.

点评 本题主要考查正弦定理和两角和与差的正弦公式的应用.三角函数公式比较多,要对公式强化记忆,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=x3-$\frac{3}{2}$x2+a在区间[-1,1]上的最大值为2,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设二项式(x-y)m(m∈N*)的展开式中,x4yr的系数为-35,则(2x+$\frac{1}{2\sqrt{x}}$)r+3的展开式中,常数项为(  )
A.$\frac{21}{2}$B.$\frac{15}{4}$C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,A(-1,0),B(1,0),若△ABC的重心G和垂心H满足GH平行于x轴(G.H不重合),
(I)求动点C的轨迹Γ的方程;
(II)已知O为坐标原点,若直线AC与以O为圆心,以|OH|为半径的圆相切,求此时直线AC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a>1,x,y满足约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤ax}\\{x+2y≤2}\end{array}\right.$,若目标函数z=x+ay最大值不小于$\frac{3}{2}$,则实数a的取值范围为(  )
A.a≥0B.a≥$\frac{3}{2}$C.a≥$\frac{3+\sqrt{5}}{4}$D.a≥$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)在区间[-$\frac{5π}{12}$,$\frac{π}{12}$]的端点上恰取相邻的一个最大值点和最小值点,则ω的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{1-cos^2x}$+sinx.
(1)求函数f(x)的值域和最小正周期;
(2)求函数f(x)在区间[0,2π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a1,a2,a3,…,ak是有限项等差数列,且a4+a7+a10=17,a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14=77,若ak=13,则k的值是18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个等比数列的第7项是12,第9项是18,求它的第8项.

查看答案和解析>>

同步练习册答案