精英家教网 > 高中数学 > 题目详情
18.已知定点M(0,-1),动点P在曲线y=2x2+1上运动,求线段MP的中点N的轨迹方程.

分析 设出N的坐标,求出M的坐标,动点P在抛物线y=2x2+1上运动,点P满足抛物线方程,代入求解,即可得到N的轨迹方程.

解答 解:设N的坐标(x,y),由题意点P与点M(0,-1)所连线段的中点N,可知P(2x,2y+1),
动点P在抛物线y=2x2+1上运动,所以2y+1=2(2x)2+1,所以y=4x2
所以点P与点M(0,-1)所连线段的中点N的轨迹方程是:y=4x2
故答案为:y=4x2

点评 本题是中档题,考查点的轨迹方程的求法,相关点法,是常见的求轨迹方程的方法,注意中点坐标的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足nSn+1=(n+1)Sn+n(n+1)(n∈N*),且a1=1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{n(n+2){a}_{n}+1}{(n+1)(n-1)}$(n≠1),记Tn=b2+b3+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设F1,F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点,P,Q为双曲线C右支上的两点,若$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{{F}_{2}Q}$,且$\overrightarrow{{F}_{1}Q}$•$\overrightarrow{PQ}$=0,则该双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.极坐标系中,曲线ρ2=$\frac{1}{1+si{n}^{2}θ}$与直线ρsinθ-$\sqrt{3}$ρcosθ+$\frac{\sqrt{3}}{2}$=0交于A、B两点,定点P($\frac{1}{2}$,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,AB=3,AC=2,BC=$\sqrt{10}$,则$\overrightarrow{AB}•\overrightarrow{CA}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0,求
(1)函数y=f(x)的解析式;
(2)方程f(x)=0的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F向其一条渐近线作垂线l,垂足为A,l与另一条渐近线交于B点,若$\overrightarrow{FB}$=3$\overrightarrow{FA}$,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示的流程图中,输出S的值是$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足方程x2+y2=1,则$\frac{y}{x-2}$的取值范围是(  )
A.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$B.$({-∞,-\frac{{\sqrt{3}}}{3}}]∪[{\frac{{\sqrt{3}}}{3},+∞})$C.$[{-\sqrt{3},\sqrt{3}}]$D.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$

查看答案和解析>>

同步练习册答案