精英家教网 > 高中数学 > 题目详情
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1,M是棱SB的中点.
(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值.
考点:与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离,空间角
分析:(Ⅰ)通过建立空间直角坐标系,求出平面SCD的法向量,利用
n
AM
=0,即可证明AM∥平面SCD;
(Ⅱ)分别求出平面SCD与平面SAB的法向量,利用法向量的夹角即可得出.
解答: (Ⅰ)证明:以点A为原点建立如图所示的空间直角坐标系,则
A(0,0,0),B(0,2,0),D(1,0,0,),S(0,0,2),M(0,1,1).
AM
=(0,1,1),
SD
=(1,0,-2),
CD
=(-1,-2,0).
设平面SCD的法向量是
n
=(x,y,z),则
x-2z=0
-x-2y=0

令z=1,则x=2,y=-1.于是
n
=(2,-1,1).
n
AM
=0-1×1+1×1=0,∴
AM
n

又∵AM?平面SCD,∴AM∥平面SCD.
(Ⅱ)解:易知平面SAB的法向量为
n1
=(1,0,0).
设平面SCD与平面SAB所成的二面角为α,
则|cosα|=|
n
n1
|
n
||
n1
|
|=
2
6
=
6
3

∴平面SCD与平面SAB所成二面角的余弦值为
6
3
点评:本题考查线面平行,考查面面角,求出平面SCD与平面SAB的法向量是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:∵tan2α=
2tanα
1-tan2α
,∴cot2α=
1-tan2α
2tanα

∴2cot2α=cotα-tanα即cotα=tanα+2cot2α
(1)请利用已知的结论证明:cotα=tanα+2tan2α+4cot4α
(2)请你把(2)的结论推广到更一般的情形,使之成为推广后的特例,并加以证明;
(3)化简tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=F1C=1.
(Ⅰ)求证:E、B、F、D1四点共面;
(Ⅱ)若点G在BC上,BG=
2
3
,点M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面BCC1B1
(Ⅲ)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E是AB的中点
(Ⅰ)在B1C上是否存在点P,使PB∥平面B1ED,若存在,求出点P的位置,若不存在,请说明理由;
(Ⅱ)求二面角D-B1E-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆C与定圆C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都外切,求动圆圆心C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a
a2-1
(ax-a-x) (a>0且a≠1)

(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)判断f(x)的单调性,并证明你的结论;
(Ⅲ)当x∈[-1,1]时,2f(x)-3b≥0恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中点.
(1)证明:平面ABC⊥平面ADC;
(2)若∠BDC=60°,求二面角C-BM-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),若存在常数m>0,使|f(x)|≤m|x|对一切定义域内x均成立,则称f(x)为F函数.给出下列函数:
①f(x)=0;②f(x)=2x;③f(x)=x2-3x+1,x≥2; ④f(x)=
x
x2+x+1

你认为上述四个函数中,哪几个是F函数,请说明理由.

查看答案和解析>>

同步练习册答案