精英家教网 > 高中数学 > 题目详情
如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=F1C=1.
(Ⅰ)求证:E、B、F、D1四点共面;
(Ⅱ)若点G在BC上,BG=
2
3
,点M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面BCC1B1
(Ⅲ)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求cosθ.
考点:与二面角有关的立体几何综合题,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(Ⅰ)在DD1上取一点N使得DN=1,连结CN,EN,得到四边形CFD1N是平行四边形,四边形DNEA是平行四边形,由此能够证明E,B,F,D1四点共面.
(Ⅱ)由已知条件推导出△BCF∽△MBG,从而推导出四边形ABME是矩形,由此能够证明EM⊥面BCC1B1
(Ⅲ)由已知条件推导出∠MHE就是截面EBFD1和面BCC1B1所成锐二面角的平面角,由此能求出结果.
解答: (Ⅰ)证明:在DD1上取一点N使得DN=1,
连接CN,EN,显然四边形CFD1N是平行四边形,
∴D1F∥CN.同理四边形DNEA是平行四边形,
∴EN∥AD,且EN=AD.又BC∥AD,且AD=BC,
∴EN∥BC,EN=BC,∴四边形CNEB是平行四边形.
∴CN∥BE.∴D1F∥BE.
∴E,B,F,D1四点共面.….(5分)
(Ⅱ)证明:∵GM⊥BF,∴△BCF∽△MBG,
MB
BC
=
BG
CF
,即
MB
3
=
2
3
2
.∴MB=1.….(7分)
∵AE=1,∴四边形ABME是矩形.∴EM⊥BB1.….(8分)
又∵平面ABB1A1⊥平面BCC1B1,且EM在平面ABB1A1内,
∴EM⊥面BCC1B1.….(10分)
(Ⅲ)∵EM⊥面BCC1B1,∴EM⊥BF,EM⊥MH,GM⊥BF.
∴∠MHE就是截面EBFD1和面BCC1B1所成锐二面角的平面角.….(12分)
∵∠EMH=90°,∴tanθ=
ME
MH
,ME=AB=3,△BCF∽△MHB.
∴3:MH=BF:1.又∵BF=
22+32
=
13

∴MH=
3
13
.∴tanθ=
ME
MH
=
13

所以cosθ=
14
14
.…..(14分)
点评:本题考查四点共面的证明,考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)空间中,到一定点距离等于定长的点的集合是球面;
(2)球面上不同的三点不可能在同一直线上;
(3)过球面上不同的两点只能作一个大圆;
(4)球的表面积是半径相同的圆面积的4倍.
其中假命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC.
(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)当D为PB的中点时,求AD与平面PAC所成的角的大小;
(Ⅲ)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥S-ABCD,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠DAB=135°,BC=2
2
,SB=SC=AB=2,F为线段SB的中点.
(Ⅰ)求证:SD∥平面CFA;
(Ⅱ)求面SCD与面SAB所成二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形ABC中,AB=4
3
,AC=2
3
,AD是BC上的中线,角BAD=30°,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x

(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1,M是棱SB的中点.
(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的菱形ABCD中,∠ABC=60°,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.

(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AD、BE是△ABC的高,DF⊥AB于F,DF交BE于G,FD的延长线交AC的延长线于H,求证:DF2=FG•FH.

查看答案和解析>>

同步练习册答案