精英家教网 > 高中数学 > 题目详情
如图,AD、BE是△ABC的高,DF⊥AB于F,DF交BE于G,FD的延长线交AC的延长线于H,求证:DF2=FG•FH.
考点:相似三角形的性质
专题:立体几何
分析:由已知条件,推导出△BFG∽△HFA,从而得到BF•AF=FG•HF,在Rt△ADB中,DF2=BF•AF,由此能够证明DF2=FG•FH.
解答: 证明:∵BE⊥AC,∴∠ABE+∠BAE=90°,
∵DF⊥AB,∴∠AHF+∠BAE=90°,
∴∠ABE=∠H,
又∵∠BFG=∠HFA=90°,
△BFG∽△HFA,
BF
HF
=
FG
AF

∴BF•AF=FG•HF,
在Rt△ADB中,DF2=BF•AF,
∴DF2=FG•FH.
点评:本题考查相似三角形的性质的应用,是中档题,解题时要注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=F1C=1.
(Ⅰ)求证:E、B、F、D1四点共面;
(Ⅱ)若点G在BC上,BG=
2
3
,点M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面BCC1B1
(Ⅲ)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中点.
(1)证明:平面ABC⊥平面ADC;
(2)若∠BDC=60°,求二面角C-BM-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥面ABCD,且PA=AB=4,E为PD中点.
(1)证明:PB∥平面AEC;
(2)证明:平面PCD⊥平面PAD;
(3)求二面角E-AC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱长为2,且侧棱AA1⊥底面ABC,点D是BC的中点
(1)求证:AD⊥C1D;
(2)求直线AC与平面ADC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=1,AB=
2
,BC=
3
,AA1=
2

(Ⅰ)求证:A1B⊥B1C;
(Ⅱ)求二面角A1-B1C-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),若存在常数m>0,使|f(x)|≤m|x|对一切定义域内x均成立,则称f(x)为F函数.给出下列函数:
①f(x)=0;②f(x)=2x;③f(x)=x2-3x+1,x≥2; ④f(x)=
x
x2+x+1

你认为上述四个函数中,哪几个是F函数,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为:
x=2t
y=1+4t
(t为参数),圆C的极坐标方程为ρ=2cosθ,则圆C的圆心到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从5本不同的文艺书和6本不同的科技书中任取3本,则文艺书和科技书都至少有一本的不同取法共有
 
种.

查看答案和解析>>

同步练习册答案