精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC=1,AB=
2
,BC=
3
,AA1=
2

(Ⅰ)求证:A1B⊥B1C;
(Ⅱ)求二面角A1-B1C-B的余弦值.
考点:与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间角
分析:(I)由已知条件利用勾股定理推导出AC⊥AB,再由直三棱柱推导出AC⊥面ABB1A1,由此利用三垂线定理能证明A1B⊥B1C.
(II)作BD⊥B1C,垂足为D,连结A1D,由题设条件能推导出∠A1DB为二面角A1-B1C-B的平面角,由此能求出二面角A1-B1C-B的大小.
解答: (I)证明:直三棱柱ABC-A1B1C1中,
AC=1,AB=
2
,BC=
3
,AA1=
2

∴AC2+AB2=BC2,∴AC⊥AB.
∵ABC-A1B1C1是直三棱柱,面ABB1A1⊥面ABC,
∴AC⊥面ABB1A1.…(3分)
∵AA1=AB=
2
,∴侧面ABB1A1是正方形,连结AB1
∴A1B⊥AB1
由三垂线定理得A1B⊥B1C.  …(6分)
(II)解:作BD⊥B1C,垂足为D,连结A1D.
由(I)知,A1B⊥B1C,∴B1C⊥面A1BD,∴B1C⊥A1D,
∴∠A1DB为二面角A1-B1C-B的平面角. …(8分)
∵A1B1⊥A1C1,∴A1B1⊥A1C,
A1B1=BB1=
2
A1C=BC=
3
B1C=
5

∴Rt△A1B1C≌Rt△B1BC,
A1D=BD=
A1B1A1C
B1C
=
6
5

又∵A1B=2,∴cosA1DB=
A1D2+BD2-A1B2
2A1D•BD
=-
2
3

A1DA=arccos(-
2
3
)

∴二面角A1-B1C-B的大小为arccos(-
2
3
).…(12分)
点评:本题考查异面直线垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x

(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2.点E是线段AB上的动点,点M为D1C的中点.
(1)当E点是AB中点时,求证:直线ME∥平面ADD1A1
(2)若二面角A-D1E-C的余弦值为
4
5
15
.求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π
4
,PA⊥底面ABCD,PA=2,M为PA的中点,N为BC的中点.AF⊥CD于F,如图建立空间直角坐标系.
(Ⅰ)求出平面PCD的一个法向量并证明MN∥平面PCD;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AD、BE是△ABC的高,DF⊥AB于F,DF交BE于G,FD的延长线交AC的延长线于H,求证:DF2=FG•FH.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的一条直径,C,D是⊙O上不同于A,B的两点,过B作⊙O的切线与AD的延长线相交于点M,AD与BC相交于N点,BN=BM.
(1)求证:∠NBD=∠DBM;
(2)求证:AM是∠BAC的角平分线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,已知b2=a(a+b),cos(A-B)+cosC=1-cos2C,试求
a+c
b
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一弹簧在弹性限度内,拉伸弹簧所用的力与弹簧伸长的长度成正比.如果20N的力能使弹簧伸长3cm,则把弹簧从平衡位置拉长6cm(在弹性限度内)时所做的功为
 
.(单位:焦耳)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O在A点处的切线于点P,若PE=6,ED=3,则AE的长为
 

查看答案和解析>>

同步练习册答案