精英家教网 > 高中数学 > 题目详情
如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O在A点处的切线于点P,若PE=6,ED=3,则AE的长为
 
考点:与圆有关的比例线段
专题:计算题,直线与圆
分析:根据DE∥AC利用平行线的性质,证出AE=BE且∠BDE=∠C.再由弦切角定理证出∠BDE=∠PAE,从而得出∠BED=∠PEA,可得△BED∽△PEA,最后利用题中数据计算线段的比,即可算出AE的长.
解答: 解:∵D是BC的中点,DE∥AC,∴AE=BE,且∠BDE=∠C.
又∵PA切圆O于点A,∴∠PAE=∠C,可得∠BDE=∠PAE.
∵∠BED=∠PEA,
∴△BED∽△PEA,可得
BE
PE
=
ED
AE
,所以AE2=BE•AE=PE•ED=18.
由此解出AE=3
2

故答案为:3
2
点评:本题给出圆满足的条件,求线段AE的长.着重考查了弦切角定理、平行线的性质、相似三角形的判定与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=1,AB=
2
,BC=
3
,AA1=
2

(Ⅰ)求证:A1B⊥B1C;
(Ⅱ)求二面角A1-B1C-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|=1,且
a
b
的夹角为
π
3
,O为平面直角坐标系的原点,点A、B满足
OA
=2
a
+
b
OB
=3
a
-
b
,则△OAB的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-x2+2x+1的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从5本不同的文艺书和6本不同的科技书中任取3本,则文艺书和科技书都至少有一本的不同取法共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠ABC=
π
4
,AB=
2
,BC=3,则sin∠BAC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2-2x+3(-1≤x≤4)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1、F2分别是椭圆
x2
a2
+
y2
b2
=1的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的焦距与长轴的比值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“a=2”是“关于x的不等式|x+1|+|x+2|<a的解集非空”的(  )
A、充要条件
B、必要不充分条件
C、充分不必要条件
D、既不充分又不必要条件

查看答案和解析>>

同步练习册答案