精英家教网 > 高中数学 > 题目详情
已知点F1、F2分别是椭圆
x2
a2
+
y2
b2
=1的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的焦距与长轴的比值为
 
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先求出 AF1 的长,直角三角形AF1;F2 中,由边角关系得tan30°=
3
3
=
|AF1|
|F1F2|
=
b2
a
2c
=,解方程能求出离心率的值.
解答: 解:∵点F1、F2分别是椭圆
x2
a2
+
y2
b2
=1的左、右焦点,
过F1且垂直于x轴的直线与椭圆交于A、B两点,
把x=-c代入椭圆的方程可得y=
b2
a

∴AF1 =
b2
a

∵△ABF2为正三角形,
∴由tan30°=
3
3
=
|AF1|
|F1F2|
=
b2
a
2c
=
a2-c2
2ac
=
1-e2
2e

∴3e2+2
3
e-3=0,解得 e=-
3
3
(舍去),或e=
3
3

故答案为:
3
3
点评:本题考查椭圆的简单性质,直角三角形中的边角关系,解方程求离心率的大小,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一弹簧在弹性限度内,拉伸弹簧所用的力与弹簧伸长的长度成正比.如果20N的力能使弹簧伸长3cm,则把弹簧从平衡位置拉长6cm(在弹性限度内)时所做的功为
 
.(单位:焦耳)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O在A点处的切线于点P,若PE=6,ED=3,则AE的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O是△ABC的外接圆,过点C作圆O的切线交BA的延长线于点D.若CD=
3
,AB=AC=2,则圆O的半径是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是双曲线
x2
a2
-
y2
9
=1
上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=3,则|PF2|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中正确的个数为(  )
①三角形一定是平面图形 
②若四边形的两对角线相交于一点,则该四边形是平面图形 
③圆心和圆上两点可确定一个平面 
④三条平行线最多可确定三个平面.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

以下判断正确的是(  )
A、函数y=f(x)为R上的可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
B、命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C、命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题
D、“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤2},B={x|0<x<1},则有(  )
A、A>BB、A?B
C、B?AD、A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2x2-x-3=0},B={x|ax+2=0},若A∩B=B,求实数a的值.

查看答案和解析>>

同步练习册答案