精英家教网 > 高中数学 > 题目详情
四棱锥S-ABCD,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠DAB=135°,BC=2
2
,SB=SC=AB=2,F为线段SB的中点.
(Ⅰ)求证:SD∥平面CFA;
(Ⅱ)求面SCD与面SAB所成二面角大小.
考点:用空间向量求平面间的夹角,直线与平面平行的判定,与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间向量及应用
分析:(Ⅰ) 连结BD交AC于点E,连结EF,由已知条件推导出EF∥SD,由此能够证明SD∥平面CFA.
(Ⅱ)以BC的中点O为坐标原点,分别以OA,OC,OS为x,y,z轴空间直角坐标系,利用向量法能求出面SCD与面SAB所成二面角大小.
解答: 解:(Ⅰ) 连结BD交AC于点E,连结EF,
∵底面ABCD为平行四边形,∴E为BD的中点.(2分)
在△BSD中,∵F为SB的中点,∴EF∥SD,(3分)
又∵EF?面CFA,SD?面CFA,∴SD∥平面CFA.(5分)
(Ⅱ)以BC的中点O为坐标原点,
分别以OA,OC,OS为x,y,z轴,建立如图所示的坐标系.
∵∠DAB=135°,BC=2
2
,SB=SC=AB=2,F为线段SB的中点,
A(
2
,0,0)
B(0,-
2
,0)
S(0,0,
2
)
C(0,
2
,0)

SA
=(
2
,0,-
2
)
SB
=(0,-
2
,-
2
)

CS
=(0,-
2
2
)
CD
=
BA
=(
2
2
,0)
,(7分)
设平面SAB的一个法向量为
n1
=(x,y,z)

n1
SA
=0
n1
SB
=0
,得
2
x-
2
z=0
-
2
y-
2
z=0

令z=1得:x=1,y=-1,∴
n1
=(1,-1,1)
.(9分)
同理设平面SCD的一个法向量为
n2
=(a,b,c)

n2
CD
=0
n2
CS
=0
,得
2
a+
2
b=0
-
2
b+
2
c=0

令b=1得:a=-1,c=1,
n2
=(-1,1,1)
.(10分)
设面SCD与面SAB所成二面角为θ
cosθ=|cos<
n1
n2
>|=|
n1
n2
|
n1
||
n2
|
|
=
1
3

θ=arccos
1
3
.(12分)
点评:本题考查直线与平面平行的证明,考查二面角的大小的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(x+
1
x
)4
展开式中的常数项为(  )
A、6B、8C、10D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an=
4an-1
2an-1+1
(n≥2)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:
n
k=1
ak
3n-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知在四面体ABCD中,AB⊥BD,△ABC与△BCD是两个全等的等腰直角三角形,AB=BC=CD.
(1)求证:平面ABC⊥平面ACD;
(2)求直线AD与平面ABC所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在几何体ABC-A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,AA1=BB1=4,AB=BC=CC1=2,E为AB1中点,
(Ⅰ)求证;CE∥平面A1B1C1
(Ⅱ)求证:求二面角B1-AC1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=F1C=1.
(Ⅰ)求证:E、B、F、D1四点共面;
(Ⅱ)若点G在BC上,BG=
2
3
,点M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面BCC1B1
(Ⅲ)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆C与定圆C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都外切,求动圆圆心C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥面ABCD,且PA=AB=4,E为PD中点.
(1)证明:PB∥平面AEC;
(2)证明:平面PCD⊥平面PAD;
(3)求二面角E-AC-D的正弦值.

查看答案和解析>>

同步练习册答案