精英家教网 > 高中数学 > 题目详情
19.一辆汽车在司机猛踩刹车后5s内停下.在这一刹车过程中,下面各速度值被记录了下来:
 刹车踩下后的时间/s 0 1 3 4 5
 速度/(m•s-1 2718  120
求刹车踩下后汽车滑过的距离的不足近似值(每个ξi均取为小区间的右端点)与过剩近似值(每个ξi均取为小区间的左端点).

分析 将区间[0,5]等分成5个小区间,根据不足近似值与过剩近似值的定义进行求解即可.

解答 解:将区间[0,5]等分成5个小区间,[0,1],[1,2],[2,3],[3,4],[4,5],每个小区间长度为1,
则距离的不足近似值为:(18+12+7+3+0)×1=40m;
距离的过剩近似值为:(27+18+12+7+3)×1=67m.
答:距离的不足近似值为40m;距离的过剩近似值为67m.

点评 本题主要考查距离的计算,根据不足近似值与过剩近似值的定义是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.勘探初期数据资料见如表:
井号I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?
($\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n_x^{-2}}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x_{2i-1}}^2=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}}$)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.实数k取何值时,复平面内表示复数z=(k2-3k-10)+(k2-7k+10)i的点满足下列条件:
(1)位于第四象限;
(2)位于直线y=x上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin4θ+cos4θ=1,则sinθ-cosθ=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.光线沿直线l1:2x+y-3=0照射到直线12:x+y+4=0上后反射,求反射线所在直线l3的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知角θ的终边经过点P(-x,-6),且cosθ=-$\frac{3}{5}$,则x=(  )
A.$\frac{9}{2}$B.-$\frac{9}{2}$C.$\frac{2}{9}$D.-$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}中,a1=1且a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n}$an=an+1(n∈N+),an=1004,则n=2008.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出下列四个结论:
①元素个数不同的两数集之间可以构建一一映射;
②如果一个函数的图象关于y铀对称,则这个函数为偶函数;
③若函数f(x)是奇函数,则f(x)•f(-x)≥0;
④方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0
其中正确结论的序号是②④(请把所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知p:m∈(-2,-1),q:m满足$\frac{x^2}{2+m}-\frac{y^2}{m+1}=1$表示椭圆,那么p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案