精英家教网 > 高中数学 > 题目详情
14.在△ABC中,AB=6,AC=4,BC=3,则$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$的值为$\frac{61}{2}$.

分析 利用余弦定理求出各角的余弦值,代入向量的数量积公式计算.

解答 解:在△ABC中,AB=6,AC=4,BC=3,则cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{43}{48}$,cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{29}{36}$,cosC=$\frac{A{C}^{2}+B{C}^{2}-A{B}^{2}}{2AC•BC}$=-$\frac{11}{24}$.
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$=4×6×$\frac{43}{48}$+6×3×$\frac{29}{36}$-4×3×$\frac{11}{24}$=$\frac{61}{2}$.
故答案为:$\frac{61}{2}$.

点评 本题考查了平面向量的数量积运算,余弦定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,抛物线y=$\frac{1}{4}$x2-x+1的顶点A在x轴上,与y轴交于B,延长AB至C,使BC=2AB,将抛物线向左平移n个单位,使抛物线与线段AC总有两个交点,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=Asin(ωx+φ)+k(A>0,ω>0)的性质.ymax=A+k,ymin=-A+k.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简$\frac{\sqrt{1+2sin280°•cos440°}}{sin260°+cos800°}$的结果是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{k}{x}$+x(x≠0),且f(1)=2,则f($\frac{1}{3}$)=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.集合A={x|3x+2≤-x2},B={x|(3-x)(x+2)≥0},集合N={x||x|≤a,a>0}
(1)若M=A∪B且M∩N=N,求实数a的取值范围;
(2)若M=A∪B且M∪N=N,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.讨论下列函数的单调性:
(1)f(x)=ax-a-x(a>0且a≠1);
(2)f(x)=$\frac{bx}{{x}^{2}-1}$(-1<x<1,b≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的中心为坐标原点O,左焦点为F,以OF为直径的圆交双曲线于点P,且4$\overrightarrow{OP}$•$\overrightarrow{OF}$=$\overrightarrow{OF}$2,则该双曲线的离心率是(  )
A.$\frac{\sqrt{10}-\sqrt{2}}{2}$B.$\frac{\sqrt{10}+\sqrt{2}}{2}$C.$\sqrt{7}$-$\sqrt{3}$D.$\sqrt{7}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在四面体O-ABC中,$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$,$\overrightarrow{OC}=\overrightarrow c$,D为BC的中点,则$\overrightarrow{AD}$=$\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c-\overrightarrow a$(用$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示).

查看答案和解析>>

同步练习册答案