精英家教网 > 高中数学 > 题目详情
3.已知点P$({sin\frac{2π}{3},cos\frac{2π}{3}})$落在角θ的终边上,且θ∈[0,2π),则θ值为$\frac{11π}{6}$.

分析 由题意可得 cosθ 和sinθ的值,结合θ的范围,求得θ的值.

解答 解:∵点P$({sin\frac{2π}{3},cos\frac{2π}{3}})$即($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)落在角θ的终边上,θ∈[0,2π),r=|OP|=1,
∴cosθ=$\frac{\sqrt{3}}{2}$,sinθ=-$\frac{1}{2}$,∴θ=$\frac{11π}{6}$,
故答案为$\frac{11π}{6}$.

点评 本题主要考查任意角的三角函数的定义,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设x∈R,且x≠0,若x+x-1=3,猜想${x^{2^n}}+{x^{-{2^n}}}(n∈{N^*})$的个位数字是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点N(x,y)为圆x2+y2=1上任意一点,则$\frac{y}{x+2}$的取值范围(  )
A.[$-\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{3}}}{3}$]B.[-$\sqrt{3}$,$\sqrt{3}$]C.(-∞,$-\frac{{\sqrt{3}}}{3}$]∪[$\frac{{\sqrt{3}}}{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到200住在第Ⅰ营区,从201到500住在第Ⅱ营区,从501到600住在第Ⅲ营区,三个营区被抽中的人数依次为(  )
A.16,26,8B.17,24,9C.16,25,9D.17,25,8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(cos5°,sin5°),$\vec b=({cos65°,sin65°})$,则$|{\vec a+2\vec b}|$=(  )
A.1B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}中,a1=1且an+1=an+2n+1,设数列{bn}满足bn=an-1,对任意正整数n不等式$\frac{1}{b_2}+\frac{1}{b_2}+…+\frac{1}{b_n}<m$均成立,则实数m的取值范围为[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,数列$\sqrt{{S_n}+1}$是公比为2的等比数列.求证:数列{an}成等比数列的充要条件是a1=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2acosB=2c-b,若O是△ABC外接圆的圆心,且$\frac{cosB}{sinC}•\overrightarrow{AB}+\frac{cosC}{sinB}•\overrightarrow{AC}=m\overrightarrow{AO}$,则m=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在同一个袋子中含有不同标号的红、黑两种颜色的小球共有8个,从红球中选取2粒,从黑球中选取1粒,共有30种不同的选法,其中黑球至多有(  )
A.2粒B.4粒C.3粒D.5粒

查看答案和解析>>

同步练习册答案