精英家教网 > 高中数学 > 题目详情
13.设等差数列{an}的前n项和为Sn.若S2=S4=3,则公差d=$-\frac{3}{4}$,a5+a6=-3.

分析 由题意可得S2,S4-S2,a5+a6成等差数列,由已知数据易得答案.

解答 解:∵S2=S4=3,
∴S4-S2=0,
∴S4-S2-S2=4d=-3,
∴d=$-\frac{3}{4}$,
∴a5+a6=S4-S2+4d=-3
故答案为:$-\frac{3}{4}$,-3

点评 本题考查等差数列的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\left\{\begin{array}{l}{3,x≥m}\\{{x}^{2}+4x+2,x<m}\end{array}\right.$,函数g(x)=f(x)-x恰有三个零点,则实数m的取值范围为(  )
A.[-2,3]B.[-1,3]C.(-2,3]D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知P为抛物线x2=4y上的动点,点P在x轴上的射影为M,点A的坐标是(2,0),则|PA|+|PM|的最小值为$\sqrt{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an}中,a1=1,an+1•an=an-an+1
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=ln$\frac{{a}_{n+2}}{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,多面体ABCDEF中,底面ABCD为正方形,EA⊥平面ABCD.FC∥EA,G,H分别是AB,EF的中点,EA=AB=2CF=2
(Ⅰ)证明:GH∥平面BCF;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.甲、乙、丙三人参加一个掷硬币的游戏,每一局三人各掷硬币一次;当有一人掷得的结果与其他二人不同时,此人就出局且游戏终止;否则就进入下一局,并且按相同的规则继续进行游戏;规定进行第十局时,无论结果如何都终止游戏.已知每次掷硬币中正面向上与反面向上的概率都是$\frac{1}{2}$,则下列结论中正确的是③.
①第一局甲就出局的概率是$\frac{1}{3}$;
②第一局有人出局的概率是$\frac{1}{2}$;
③第三局才有人出局的概率是$\frac{3}{64}$;
④若直到第九局才有人出局,则甲出局的概率是$\frac{1}{3}$;
⑤该游戏在终止前,至少玩了六局的概率大于$\frac{1}{1000}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线y2=2px(p>0)的焦点是双曲线$\frac{{x}^{2}}{5+p}-\frac{{y}^{2}}{7+p}=1$的一个焦点,则p的值为(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.棱锥的三视图如图所示,且三个三角形均为直角三角形,则$\frac{1}{x}+\frac{1}{y}$的最小值为$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在正方体ABCD-A1B1C1D1中,二面角A1-BD-A的余弦值大小是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案