精英家教网 > 高中数学 > 题目详情
3.今年来,网上购物已经成为人们消费的一种趋势,假设某网上商城的某种商品每月的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式:y=$\frac{m}{x-1}$+4(x-6)2,其中1<x<6,m为常数.已知销售价格为4元/件时,每月可售出20千件.
(1)求m的值;
(2)假设每件商品的进价为1元,试确定销售价格x的值,使该商城每月销售该商品所获得的利润最大.(结果保留一位小数).

分析 (1)把x=4,y=20代入关系式y=$\frac{m}{x-1}$+4(x-6)2,解方程即可解出m;
(2)利用可得每月销售饰品所获得的利润f(x)=(x-1)[$\frac{12}{x-1}$+4(x-6)2],利用导数研究其定义域上的单调性与极值最值即可得出.

解答 解:(1)∵x=4时,y=20,
代入关系式y=$\frac{m}{x-1}$+4(x-6)2,得$\frac{m}{3}$+4×22=20,
解得m=12.
(2)由(1)可知,饰品每月的销售量y=$\frac{12}{x-1}$+4(x-6)2
∴每月销售饰品所获得的利润
f(x)=(x-1)[$\frac{12}{x-1}$+4(x-6)2]=4(x3-13x2+48x)-132,(1<x<6),
从而 f′(x)=4(3x2-26x+48)=4(3x-8)(x-6),(1<x<6),
令f′(x)=0,得x=$\frac{8}{3}$,且在1<x<$\frac{8}{3}$上,f′(x)>0,函数f(x)单调递增;
在$\frac{8}{3}$<x<6上,f′(x)<0,函数f(x)单调递减,
∴x=$\frac{8}{3}$是函数f(x)在(1,6)内的极大值点,也是最大值点,
∴当x=$\frac{8}{3}$≈2.7时,函数f(x)取得最大值.
即销售价格为2.7元/件时,该店每月销售饰品所获得的利润最大.

点评 本题主要考查函数的应用问题,求函数的解析式,利用导数研究函数的最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.320被5除所得的余数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{ax}{{{x^2}+b}}$(a,b∈R).
(1)若f(x)在x=1处取得极值为2,求函数f(x)的解析式;
(2)若a≠0,且b=1时,求f(x)的单调区间和极值;
(3)在(2)的条件下,求函数f(x)在区间[-3,6]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直三棱柱ABC-A1B1C1中,已知BC=CC1=AB,AB⊥BC,点M,N,G分别是CC1,B1C,AB的中点.
(1)求证:B1C⊥平面ABN;
(2)求证:CG∥平面AB1M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一条渔船以6km/h的速度向垂直于对岸的方向行驶,同时河水的流速为2km/h,则这条渔船实际航行的速度大小为(  )
A.$2\sqrt{10}$km/hB.$4\sqrt{2}$km/hC.2$\sqrt{3}$km/hD.3km/h

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若三角形内切圆半径为r,三边长为a,b,c,则三角形的面积S=$\frac{1}{2}$(a+b+c)r,利用类比思想:若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积V=$\frac{1}{3}$R(S1+S2+S3+S4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$,g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2015}}{2015}$,设函数F(x)=f(x+4)•g(x-3),且函数F(x)的零点均在区间[a,b](a,b∈Z,a<b)内,则b-a的最小值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow m=(2cosx+2\sqrt{3}sinx,1),\overrightarrow n=(cosx,-y)$,且$\overrightarrow m⊥\overrightarrow n$;
(1)将y表示为x的函数f(x),并求f(x)的单调增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若$f(\frac{A}{2})=3$,且,a=2,b=c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和Sn满足Sn=1-an(n∈N*
(1)求数列{an}的通项公式;
(2)比较$\frac{1}{1+{a}_{n}}$与$\frac{n}{1+n}$-$\frac{{n}^{2}}{(n+1)^{2}}$(an-$\frac{1}{n}$)大小(n∈N*);
(3)证明:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+…+$\frac{1}{1+{a}_{n}}$>$\frac{{n}^{2}}{n+1-{a}_{n}}$(n∈N*,n≥2)

查看答案和解析>>

同步练习册答案