精英家教网 > 高中数学 > 题目详情
1.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$…+$\frac{1}{20}$的值的一个程序框图,写出对应的程序.

分析 根据程序框图,是利用直到型循环结构,写出对应的程序即可.

解答 解:根据如图给出的程序框图,写出对应的程序如下:
s=0
n=2
i=1
DO
  s=s+$\frac{1}{n}$
  n=n+2
  i=i+1
LOOP  UNTIL
i>10
PRINT s
END.

点评 本题考查了根据程序框图编写程序语言的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=1+a•($\frac{1}{2}$)x+($\frac{1}{4}$)x,a∈R.
(Ⅰ)不论a为何值时,f(x)不是奇函数;
(Ⅱ)若对任意x∈[0,1],不等式f(x)≤2016恒成立,求a的取值范围;
(Ⅲ)若f(x)有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知函数f(x)=ex+ax2-x+1,a≥0,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=3sinx-log2x的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一玩具车沿某一斜面自由滑下,测得下滑的水平距离s与时间t之间的函数关系为s=$\frac{1}{2}$t2,则t=3时,此玩具车在水平方向的瞬时速度为(  )
A.$\frac{3}{2}$B.$\frac{9}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知命题p:x2+2x-3>0;命题q:3-x>1,若“(¬p)∧q”为真,则x的取值范围是[-3,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax+lnx-$\frac{{x}^{2}}{x-lnx}$有三个不同的零点x1,x2,x3(其中x1<x2<x3),则(1-$\frac{l{nx}_{1}}{{x}_{1}}$)2(1-$\frac{l{nx}_{2}}{{x}_{2}}$)(1-$\frac{l{nx}_{3}}{{x}_{3}}$)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为研究质量x(单位:g)对弹簧长度y(单位:cm)的影响,对不同质量的6个物体进行测量,数据如下表所示:
 x/g 5 10 15 2025  30
 y/g 7.258.12  8.95 9.90 10.911.8
(1)作出散点图,并求出线性回归方程;
(2)求出R2
(3)进行残差分析.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=xex-ax+a,若存在唯一的整数x0,使得f(x0)<0,则实数a的取值范围是(  )
A.[-$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)B.[$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)C.[-$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)D.[$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)

查看答案和解析>>

同步练习册答案