精英家教网 > 高中数学 > 题目详情

【题目】函数的定义域为.

(1)当时,求函数的值域;

(2)若函数在定义域上是减函数,求的取值范围;

3)求函数在定义域上的最大值及最小值,并求出函数取最值时的值.

【答案】1;(2;(3见解析

【解析】试题分析:1时, 由均值不等式或钩形函数图像可求得函数值域。(2)由减函数的定义证明法来求参数的范围。(3)由于a的取值不同,函数的单调性有变化,所以根据单调性来讨论函数的值域,分讨论函数值域。

试题解析:(1)函数所以函数的值域为

(2)若函数在定义域上是减函数,则任取 都有 成立,即只要即可,由 ,故 所以,故的取值范围是

(3)当时,函数上单调增,无最小值, 时取得最大值;由(2)得当时, 上单调减,无最大值, 时取得最小值 时,函数上单调减,在上单调增,无最大值,当 时取得最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是菱形,的中点,点在侧棱上.

(1)求证:平面

(2)若的中点,求证:平面

(3)若,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在OAB中,顶点A的坐标是(30),顶点B的坐标是(12),记OAB位于直线左侧图形的面积为f(t)

1)求函数f(t)的解析式;

2)设函数,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,若的子集,把中的所有数的和称为容量(规定空集的容量为0),若的容量为奇(偶)数,则称的奇(偶)子集,命题①:的奇子集与偶子集个数相等;命题②:当时,的所有奇子集的容量之和与所有偶子集的容量之和相等,则下列说法正确的是(

A.命题①和命题②都成立B.命题①和命题②都不成立

C.命题①成立,命题②不成立D.命题①不成立,命题②成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的极值点的个数;

(2)若恒成立的最大值

参考数据:

1.6

1.7

1.8

4.953

5.474

6.050

0.470

0.531

0.588

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动圆与圆外切,且与直线相切,则动圆圆心的轨迹方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数其中

(1)时,讨论函数的单调性;

(2)若函数仅在处有极值,求的取值范围;

(3)若对于任意的不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c,bsinA=cosB.

1)求角B的大小;

2)若b=2,ABC的面积为,求ac.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数满足,且时,成立,若恒成立.

1)判断的单调性和对称性;

2)求的取值范围.

查看答案和解析>>

同步练习册答案