用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是( )
A.a2=b2 B.a2<b2 C.a2≤b2 D.a2<b2,且a2=b2
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题
一个关于自然数n的命题,如果验证当n=1时命题成立,并在假设当n=k(k≥1且k∈N*)时命题成立的基础上,证明了当n=k+2时命题成立,那么综合上述,对于( )
A.一切正整数命题成立 B.一切正奇数命题成立
C.一切正偶数命题成立 D.以上都不对
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:填空题
(2014•祁东县一模)已知a,b,c∈R,且2a+2b+c=8,则(a﹣1)2+(b+2)2+(c﹣3)2的最小值是 .
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题
用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为( )
A.a,b都能被3整除 B.a,b都不能被3整除
C.a,b不都能被3整除 D.a不能被3整除
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题
用反证法证明:将9个球分别染成红色或白色,那么无论怎么染,至少有5个球是同色的.其假设应是( )
A.至少有5个球是同色的 B.至少有5个球不是同色的
C.至多有4个球是同色的 D.至少有4个球不是同色的
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题
用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;
②所以一个三角形中不能有两个直角;
③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°.
正确顺序的序号为( )
A.①②③ B.③①② C.①③② D.②③①
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.2综合法与分析法练习卷(解析版) 题型:选择题
求证:
+
>
.
证明:因为
+
和
都是正数,
所以为了证明
+
>
,
只需证明(
+
)2>(
)2,
展开得5+2
>5,即2
>0,显然成立,
所以不等式
+
>
.上述证明过程应用了( )
A.综合法
B.分析法
C.综合法、分析法混合
D.间接证法
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.1比较法练习卷(解析版) 题型:填空题
已知a、b、c、d都是正数,若(ab+cd)(ac+bd)≥kabcd恒成立,则k的取值范围为 .
查看答案和解析>>
科目:高中数学 来源:[同步]2014年新人教A版选修4-5 1.1不等式练习卷(解析版) 题型:填空题
已知二次函数f(x)=ax2﹣4x+c+1的值域是[1,+∞),则
+
的最小值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com