精英家教网 > 高中数学 > 题目详情

用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为( )

A.a,b都能被3整除 B.a,b都不能被3整除

C.a,b不都能被3整除 D.a不能被3整除

 

B

【解析】

试题分析:“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除.

【解析】
反证法证明命题时,应假设命题的反面成立.“a,b中至少有一个能被3整除”的反面是:

“a,b都不能被3整除”,故应假设 a,b都不能被3整除,

故选 B.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:解答题

证明不等式(n∈N*)

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:填空题

(2014•荆门模拟)已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则e的取值范围是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题

已知2x+3y+4z=1,则x2+y2+z2的最小值是 ( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题

已知a,b∈R,a2+b2=4,求3a+2b的取值范围为( )

A.3a+2b≤4 B.3a+2b≤ C.3a+2b≥4 D.不确定

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明命题:“若整数系数一元二次方程ax2+bx+c=0(a≠o)有有理根,那么 a,b,c中至少有一个是偶数”时,应假设( )

A.a,b,c中至多一个是偶数

B.a,b,c中至少一个是奇数

C.a,b,c中全是奇数

D.a,b,c中恰有一个偶数

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是( )

A.a2=b2 B.a2<b2 C.a2≤b2 D.a2<b2,且a2=b2

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.2综合法与分析法练习卷(解析版) 题型:选择题

要证:a2+b2﹣1﹣a2b2≤0,只要证明( )

A.2ab﹣1﹣a2b2≤0 B.a2+b2﹣1﹣≤0

C.﹣1﹣a2b2≤0 D.(a2﹣1)(b2﹣1)≥0

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 1.2绝对值不等式练习卷(解析版) 题型:选择题

(2012•菏泽一模)不等式|x﹣2|﹣|x﹣1|>0的解集为( )

A.(﹣∞,) B.(﹣∞,﹣) C.(,+∞) D.(﹣,+∞)

 

查看答案和解析>>

同步练习册答案