精英家教网 > 高中数学 > 题目详情

用反证法证明命题:“若整数系数一元二次方程ax2+bx+c=0(a≠o)有有理根,那么 a,b,c中至少有一个是偶数”时,应假设( )

A.a,b,c中至多一个是偶数

B.a,b,c中至少一个是奇数

C.a,b,c中全是奇数

D.a,b,c中恰有一个偶数

 

C

【解析】

试题分析:用反证法证明数学命题时,应先假设命题的否定成立,求得命题:“a,b,c中至少有一个是偶数”的否定,即可

得到结论.

【解析】
由于用反证法证明数学命题时,应先把要证的结论进行否定,得到要证的结论的反面.

而命题:“a,b,c中至少有一个是偶数”的否定为:“a,b,c中全是奇数”,

故选C.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:填空题

用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n﹣1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:选择题

函数( )

A.6 B.2 C.5 D.2

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题

已知a+b=1,则以下成立的是( )

A.a2+b2>1 B.a2+b2=1 C.a2+b2<1 D.a2b2=1

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为( )

A.a,b都能被3整除 B.a,b都不能被3整除

C.a,b不都能被3整除 D.a不能被3整除

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明“方程ax2+bx+c=0(a≠0)至多有两个解”的假设中,正确的是( )

A.至多有一个解 B.有且只有两个解

C.至少有三个解 D.至少有两个解

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:

①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;

②所以一个三角形中不能有两个直角;

③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°.

正确顺序的序号为( )

A.①②③ B.③①② C.①③② D.②③①

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.1比较法练习卷(解析版) 题型:填空题

要证明“+”可选择的方法有以下几种,其中最合理的是 .(填序号)

①反证法

②分析法

③综合法.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 1.2绝对值不等式练习卷(解析版) 题型:选择题

(2014•南昌模拟)对任意x∈R,且x≠0,不等式|x+|>|a﹣5|+1恒成立,则实数a的取值范围是( )

A.(﹣∞,4)∪(6,+∞) B.(2,8) C.(3,5) D.(4,6)

 

查看答案和解析>>

同步练习册答案