精英家教网 > 高中数学 > 题目详情
11.小蚂蚁的家住在长方体ABCD-A1B1C1D1的A处,小蚂蚁的奶奶家住在C1处,三条棱长分别是AA1=1,AB=2,AD=4,小蚂蚁从A点出发,沿长方体的表面到小蚂蚁奶奶家C1的最短矩离是(  )
A.5B.7C.$\sqrt{29}$D.$\sqrt{37}$

分析 根据题意知:蚂蚁所走的路线有三种情况,利用勾股定理分别求出三种情况对应的AC1的长,由此能求出小蚂蚁从A点出发,沿长方体的表面到小蚂蚁奶奶家C1的最短矩离.

解答 解:根据题意知:
蚂蚁所走的路线有三种情况(如图①②③),

由勾股定理得:
图①中,AC1=$\sqrt{{3}^{2}+{4}^{2}}$=5,
图②中,AC1=$\sqrt{{6}^{2}+{1}^{2}}$=$\sqrt{37}$,
图③中,AC1=$\sqrt{{5}^{2}+{2}^{2}}$=$\sqrt{29}$,
∴小蚂蚁从A点出发,
沿长方体的表面到小蚂蚁奶奶家C1的最短矩离是$\sqrt{29}$.
故选:C.

点评 本题考查最短距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数f(x)=log2sin($\frac{π}{4}$-$\frac{π}{4}$x)的单调增区间为(  )
A.[3+8k,7+8k)B.(5+8k,7+8k]C.[5+8k,7+8k)D.(3+8k,7+8k]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆经过点A(-2,0),B(0,-1),点P是椭圆上在第一象限的点,直线PA交y轴于点M,直线PB交x轴于点N.
(Ⅰ)求椭圆的标准方程和离心率;
(Ⅱ)是否存在点P,使得直线MN与直线AB平行?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在区间[0,9]上随机地取一个数,若x满足m≤x≤m+7的概率为$\frac{2}{3}$,则m=3或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求P(x,y)是直角坐标平面xOy上的一个动点,点P到直线x=8的距离等于它到点M(2,0)的距离.
(1)求动点P的轨迹C1的方程,并指出该轨迹为何种圆锥曲线;
(2)求曲线C1关于直线x=8的对称曲线C2的方程及曲线C2的焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是(  )
A.2x-3y+5=0B.2x-3y+8=0C.3x+2y-1=0D.3x+2y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点P(x,y)的轨迹方程是y=f(x),则${∫}_{-1}^{1}$f(x)dx=(  )
A.$\frac{π}{2}$+1B.$\frac{π}{2}$+2C.π+1D.π+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.f(x)是定义在R上的奇函数,当x>0时,(x2+l)f′(x)+2xf(x)<0,且f(2)=0.则不等式f(x)<0的解集是(  )
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(0,2)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}与[bn}满足an+1=3an,bn=bn+1-1,b6=a1=3,若(2λ-1)an>36bn,对一切n∈N*恒成立,则实数λ的取值范围是($\frac{13}{18}$,+∞).

查看答案和解析>>

同步练习册答案