精英家教网 > 高中数学 > 题目详情
3.如图放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点P(x,y)的轨迹方程是y=f(x),则${∫}_{-1}^{1}$f(x)dx=(  )
A.$\frac{π}{2}$+1B.$\frac{π}{2}$+2C.π+1D.π+2

分析 判断P的轨迹,然后通过定积分的几何意义求解即可.

解答 解:当-2≤x≤-1,P的轨迹是以A为圆心,半径为1的$\frac{1}{4}$圆,
当-1≤x≤1时,P的轨迹是以B(原点为O)为圆心,半径为$\sqrt{2}$的$\frac{1}{4}$圆,
当1≤x≤2时,P的轨迹是以C为圆心,半径为1的$\frac{1}{4}$圆,
则${∫}_{-1}^{1}$f(x)dx的几何意义是,P的轨迹与x=-1,x=1,以及x轴围成的几何图形的面积.
所以${∫}_{-1}^{1}$f(x)dx=1×2+$\frac{1}{4}π•(\sqrt{2})^{2}$-$\frac{1}{2}×2×1$=1+$\frac{π}{2}$.
故选:A.

点评 本题考查的知识点是函数图象的变化,其中根据已知画出正方形转动过程中的图象,利用数形结合的思想对本题进行分析是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知x1,x2,x3,…xn的平均数为a,则3x1+1,3x2+1,…,3xn+1的平均数是3a+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的不等式|2x+1|-|2x-2|<a2-4a有实数解,则实数a的取值范围为{x|a<1,或 a>3 }.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.小蚂蚁的家住在长方体ABCD-A1B1C1D1的A处,小蚂蚁的奶奶家住在C1处,三条棱长分别是AA1=1,AB=2,AD=4,小蚂蚁从A点出发,沿长方体的表面到小蚂蚁奶奶家C1的最短矩离是(  )
A.5B.7C.$\sqrt{29}$D.$\sqrt{37}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,DD1⊥底面ABCD,E是DD1的中点
(Ⅰ)求证:BD1∥平面AEC
(Ⅱ)求证:平面AEC⊥平面BDD1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系的长度单位相同,圆C的直角坐标方程为x2+y2+2x-2y=0,射线OM的极坐标方程为θ=$\frac{3π}{4}$.
(1)求射线OM的直角坐标方程;
(2)已知射线OM与圆C的交于两点,求相交线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平行四边形ABCD中,E、F分别是边CD和BC的中点,若$\overrightarrow{AC}=λ\overrightarrow{AE}+μ\overrightarrow{AF,}$其中λ,μ∈R,则λ+μ=(  )
A.$\frac{1}{3}$B.2C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某房产公司现有出租房20套,若每月租金为1000元,可全部租出,每月租金每增加100元,则租不出去的房间将多一套.而且每月各项固定支出共8100元,设月租金是100元的整数倍,每月租出x套,月收益为y元,且月收益=月租金-每月各项固定支出.
(1)写出y关于x的函数关系式.
(2)每月租出多少套房间,所得收益将达到最大值,最大收益是多少元?
(3)当每月出租房间为多少套时.所得收益为0元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校从高一年级随机抽取了20名学生第一学期的数学学期综合成绩和物理学期综合成绩列表如下
 学生序号 1 2 3 4 5 6 7 8 910 
 数学学期综合成绩 96 92 91 91 81 76 82 79 90 93
 物理学期综合成绩 91 91 90 92 90 78 91 71 78 84
 
学生序号
 11 12 13 14 15 16 17 18 19 20
 数学学期综合成绩 68 72 79 70 64 61 63 66 53 59
 物理学期综合成绩 79 78 62 72 62 60 68 72 56 54
规定:综合成绩不低于90分者为优秀,低于90分为不优秀
(1)在序号1,2,3,4,5,6这6个学生中随机选两名,求这两名学生数学和物理都优秀的概率
(2)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩与数学成绩有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 p(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

同步练习册答案