精英家教网 > 高中数学 > 题目详情
18.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,DD1⊥底面ABCD,E是DD1的中点
(Ⅰ)求证:BD1∥平面AEC
(Ⅱ)求证:平面AEC⊥平面BDD1

分析 (Ⅰ)设AC与BD交于点O,接OE,可得OE∥D1BB,即可证明BD1∥平面AEC;
(Ⅱ)由底面ABCD是菱形,得AC⊥BD
又DD1⊥底面ABCD,可得AC?平面AEC,即可得平面AEC⊥平面BDD1

解答 证明:(Ⅰ)设AC与BD交于点O,接OE,
∵底面ABCD是菱形,∴O为DB中点,又因为E是DD1的中点,
∴OE∥D1BB,
∵OE?面AEC,BD1?平面AEC
∴BD1∥平面AEC
(Ⅱ)∵底面ABCD是菱形,∴AC⊥BD
∵DD1⊥底面ABCD,∴DD1⊥AC,
且DB∩DD1=D,∴AC⊥平面BDD1
∵AC?平面AEC,∴平面AEC⊥平面BDD1

点评 本题主要考查了平面与平面垂直、直线与平面平行的判定,同时考查了空间想象能力和论证推理的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若等比数列{an}的前n项和Sn=3n-1,则其公比为(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m、n为两条不同的直线,α、β、γ为三个不同的平面,下列结论正确的是(  )
A.若m∥α,n∥α,则m∥nB.若α∥γ,β∥γ,则α∥β
C.若α⊥β,m∥α,则m⊥βD.若α⊥β,m?α,n?β,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求P(x,y)是直角坐标平面xOy上的一个动点,点P到直线x=8的距离等于它到点M(2,0)的距离.
(1)求动点P的轨迹C1的方程,并指出该轨迹为何种圆锥曲线;
(2)求曲线C1关于直线x=8的对称曲线C2的方程及曲线C2的焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为($\sqrt{2}$,$\frac{3π}{4}$),半径r=1.
(1)求圆C的极坐标方程;
(2)若α∈[0,$\frac{π}{3}$],直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),点P的直角坐标为(0,2),直线l交圆C与A、B两点,求$\frac{|PA|•|PB|}{|PA|+|PB|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点P(x,y)的轨迹方程是y=f(x),则${∫}_{-1}^{1}$f(x)dx=(  )
A.$\frac{π}{2}$+1B.$\frac{π}{2}$+2C.π+1D.π+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=x3+$\frac{3}{2}$x2+m在[-2,1]上的最大值为$\frac{9}{2}$,则实数m的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sinα=$\frac{3}{5}$,则cos2α=(  )
A.-$\frac{16}{25}$B.-$\frac{7}{25}$C.$\frac{7}{25}$D.$\frac{16}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校与英国某高中结成友好学校,该校计划选派3人作为交换生到英国进行一个月的生活体验,学校准备从该校英语兴趣小组的6名同学中选派,已知英语兴趣小组中男生有4人,女生有2人
(Ⅰ)求男生甲或女生乙被选的概率
(Ⅱ)记选派的3人中的女生人数为随机变量ξ,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案