精英家教网 > 高中数学 > 题目详情
19.若等比数列{an}的前n项和Sn=3n-1,则其公比为(  )
A.-3B.3C.-1D.1

分析 利用等比数列的{an}的前n项和Sn=3n-1,求出前2项,然后求解公比即可.

解答 解:等比数列{an}的前n项和Sn=3n-1,可得a1=2,S2=32-1=8,则a2=6.
q=$\frac{{a}_{2}}{{a}_{1}}$=3.
故选:B.

点评 本题考查等比数列的应用,公比的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在斜三角形ABC中,$\frac{tanA+tanB+tanC}{2tanA•tanB•tanC}$=(  )
A.1B.$\frac{1}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了解高一年级1200名学生的视力情况,采用系统抽样的方法,从中抽取容量为60的样本,则分段间隔为(  )
A.10B.20C.40D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,∠A=60°,∠B=45°,BC=$\sqrt{3}$,那么AC等于(  )
A.$\sqrt{6}$B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=cos(ωx+φ)(ω>0,-\frac{π}{2}<φ<0)$的最小正周期为π,且$f(\frac{π}{4})=\frac{{\sqrt{3}}}{2}$.
(1)求ω和φ的值;
(2)给定坐标系中作出函数f(x)在[0,π]上的图象,并结合图象写出函数的单调递减区间(直接写出结果即可,不需要叙述过程);
(3)若$f(x)>\frac{{\sqrt{2}}}{2}$,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x1,x2,x3,…xn的平均数为a,则3x1+1,3x2+1,…,3xn+1的平均数是3a+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在等腰梯形ABCD中,AD∥BC,AD=2,BC=2($\sqrt{2}$+1),DE⊥BC于E,DE=$\sqrt{10}$,现将梯形ABCD沿DE折成二面角B-DE-C(如图2),使得AC与平面BCE所成的角为45°

(Ⅰ)求证:AD∥平面BCE;
(Ⅱ)求二面角A-CE-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,E为AD的中点,AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(Ⅰ)求证:平面PCD⊥平面PAD;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱CD上是否存在点M,使得AM⊥平面PBE?若存在,求出$\frac{DM}{DC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,DD1⊥底面ABCD,E是DD1的中点
(Ⅰ)求证:BD1∥平面AEC
(Ⅱ)求证:平面AEC⊥平面BDD1

查看答案和解析>>

同步练习册答案