分析 (1)根据函数的周期和条件,建立方程关系进行求解即可.
(2)利用三角函数的图象关系进行作图即可.
(3)结合三角函数的不等式进行求解.
解答 解:(1)∵函数的最小正周期为π,
∴T=$\frac{2π}{ω}$=π,则ω=2,
则f(x)=cos(2x+φ),
由$f(\frac{π}{4})=\frac{{\sqrt{3}}}{2}$得
$cos(2x+φ)=cos(2×\frac{π}{4}+φ)=cos(\frac{π}{2}+φ)=-sinφ=\frac{{\sqrt{3}}}{2}$,(4分)
即$sinφ=-\frac{{\sqrt{3}}}{2},φ=-\frac{π}{3}$.(6分)
(2)f(x)=cos(2x-$\frac{π}{3}$),
如下图(10分) ![]()
函数的单调递减区间$[kπ+\frac{π}{6},kπ+\frac{2π}{3}],(k∈Z)$.(12分)
(3)由(1)知$f(x)=cos(2x-\frac{π}{3})$,
令$cos(2x-\frac{π}{3})>\frac{{\sqrt{2}}}{2}$,
得$2kπ-\frac{π}{4}<2x-\frac{π}{3}<2kπ+\frac{π}{4},(k∈Z)$,即$2kπ+\frac{π}{12}<2x<2kπ+\frac{7π}{12}(k∈Z)$,(14分)
得$kπ+\frac{π}{24}<x<kπ+\frac{7π}{24}(k∈Z)$,即$x∈(kπ+\frac{π}{24},kπ+\frac{7π}{24}),(k∈Z)$.(16分)
点评 本题主要考查三角函数的图象和性质,根据三角函数的图象求出ω 和φ的值是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∩β=l,m?α,n?β,则m,n一定相交 | B. | 若α∥β,m?α,n?β,则m,n一定平行 | ||
| C. | 若α∥β,m∥α,n∥β,则m,n一定平行 | D. | 若α⊥β,m⊥α,n⊥β,则m,n一定垂直 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com