精英家教网 > 高中数学 > 题目详情
14.设函数$f(x)=cos(ωx+φ)(ω>0,-\frac{π}{2}<φ<0)$的最小正周期为π,且$f(\frac{π}{4})=\frac{{\sqrt{3}}}{2}$.
(1)求ω和φ的值;
(2)给定坐标系中作出函数f(x)在[0,π]上的图象,并结合图象写出函数的单调递减区间(直接写出结果即可,不需要叙述过程);
(3)若$f(x)>\frac{{\sqrt{2}}}{2}$,求x的取值范围.

分析 (1)根据函数的周期和条件,建立方程关系进行求解即可.
(2)利用三角函数的图象关系进行作图即可.
(3)结合三角函数的不等式进行求解.

解答 解:(1)∵函数的最小正周期为π,
∴T=$\frac{2π}{ω}$=π,则ω=2,
则f(x)=cos(2x+φ),
由$f(\frac{π}{4})=\frac{{\sqrt{3}}}{2}$得
$cos(2x+φ)=cos(2×\frac{π}{4}+φ)=cos(\frac{π}{2}+φ)=-sinφ=\frac{{\sqrt{3}}}{2}$,(4分)
即$sinφ=-\frac{{\sqrt{3}}}{2},φ=-\frac{π}{3}$.(6分)
(2)f(x)=cos(2x-$\frac{π}{3}$),
如下图(10分)  

函数的单调递减区间$[kπ+\frac{π}{6},kπ+\frac{2π}{3}],(k∈Z)$.(12分)
(3)由(1)知$f(x)=cos(2x-\frac{π}{3})$,
令$cos(2x-\frac{π}{3})>\frac{{\sqrt{2}}}{2}$,
得$2kπ-\frac{π}{4}<2x-\frac{π}{3}<2kπ+\frac{π}{4},(k∈Z)$,即$2kπ+\frac{π}{12}<2x<2kπ+\frac{7π}{12}(k∈Z)$,(14分)
得$kπ+\frac{π}{24}<x<kπ+\frac{7π}{24}(k∈Z)$,即$x∈(kπ+\frac{π}{24},kπ+\frac{7π}{24}),(k∈Z)$.(16分)

点评 本题主要考查三角函数的图象和性质,根据三角函数的图象求出ω 和φ的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知空间整数点的序列如下:(1,1,1)(1,1,2)(1,2,1)(2,1,1)(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1)(1,1,4)(1,4,1)(4,1,1)(1,2,3)(1,3,2)…,则(4,2,1)是这个序列中的第29个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设α,β是两个不同的平面,m,n,l 是三条不同的直线,下列命题中正确的是(  )
A.若α∩β=l,m?α,n?β,则m,n一定相交B.若α∥β,m?α,n?β,则m,n一定平行
C.若α∥β,m∥α,n∥β,则m,n一定平行D.若α⊥β,m⊥α,n⊥β,则m,n一定垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),且椭圆Γ的上顶点到直线$\sqrt{3}$x+y+1=0的距离等于1.
(1)求椭圆Γ的标准方程;
(2)过点P(1,2)作两条倾斜角互补的两直线l1,l2分别交椭圆Γ于A,B,C,D四点,求kAC+kBD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为150°,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=4,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若等比数列{an}的前n项和Sn=3n-1,则其公比为(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.统计假设H0:P(AB)=P(A)P(B)成立时,以下判断:①P($\overline{A}$B)=P($\overline{A}$)•P(B),②P(A$\overline{B}$)=P(A)•P($\overline{B}$),③P($\overline{A}$•$\overline{B}$)=P($\overline{A}$)•P($\overline{B}$),其中正确的命题个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“x=-3”是“x2+3x=0”的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为($\sqrt{2}$,$\frac{3π}{4}$),半径r=1.
(1)求圆C的极坐标方程;
(2)若α∈[0,$\frac{π}{3}$],直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),点P的直角坐标为(0,2),直线l交圆C与A、B两点,求$\frac{|PA|•|PB|}{|PA|+|PB|}$的最小值.

查看答案和解析>>

同步练习册答案