精英家教网 > 高中数学 > 题目详情
9.在斜三角形ABC中,$\frac{tanA+tanB+tanC}{2tanA•tanB•tanC}$=(  )
A.1B.$\frac{1}{2}$C.2D.$\sqrt{3}$

分析 利用两角和与差的正切函数,转化求解即可.

解答 解:由题意知:A≠$\frac{π}{2}$,B≠$\frac{π}{2}$,C≠$\frac{π}{2}$,且A+B+C=π
∴tan(A+B)=tan(π-C)=-tanC,
又∵tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$,
∴tanA+tanB=tan(A+B)(1-tanAtanB)=-tanC(1-tanAtanB)=-tanC+tanAtanBtanC,
即tanA+tanB+tanC=tanAtanBtanC,
∴$\frac{tanA+tanB+tanC}{2tanA•tanB•tanC}$=$\frac{1}{2}$.
故选:B.

点评 本题考查两角和与差的三角函数,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.抛物线y=$\frac{1}{4a}$x2(a≠0)的焦点坐标为(  )
A.a>0时为(0,a),a<0时为(0,-a)B.a>0时为(0,$\frac{a}{2}$),a<0时为(0,-$\frac{a}{2}$)
C.(0,a)D.($\frac{1}{a}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:
(1)试估计这组样本数据的众数和中位数(结果精确到0.1);
(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?
(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设△ABC的内角A、B、C的对边分别为a、b、c,且cosB=$\frac{4}{5}$,b=3.
(1)若角A与390°的终边相同,求a;
(2)当△ABC的面积为3时,求a2+c2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知空间整数点的序列如下:(1,1,1)(1,1,2)(1,2,1)(2,1,1)(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1)(1,1,4)(1,4,1)(4,1,1)(1,2,3)(1,3,2)…,则(4,2,1)是这个序列中的第29个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在多面体ABCDEFG中,四边形ABCD与ADEF是边长均为a的正方形,四边形ABGF是直角梯形,AB⊥AF,且FA=2FG=4FH.
(1)求证:平面BCG⊥平面EHG;
(2)若a=4,求四棱锥G-BCEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x元/件(1≤x≤2),则新增的年销量P=4(2-x)2(万件).
(1)写出今年商户甲的收益f(x)(单位:万元)与x的函数关系式;
(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设p是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{9}$=1上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=5,则|PF2|=(  )
A.1或5B.1或9C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若等比数列{an}的前n项和Sn=3n-1,则其公比为(  )
A.-3B.3C.-1D.1

查看答案和解析>>

同步练习册答案