精英家教网 > 高中数学 > 题目详情
17.设△ABC的内角A、B、C的对边分别为a、b、c,且cosB=$\frac{4}{5}$,b=3.
(1)若角A与390°的终边相同,求a;
(2)当△ABC的面积为3时,求a2+c2的值.

分析 (1)根据cosB求得sinB,进而利用正弦定理求得a.
(2)利用三角形面积公式求得ac的值,进而利用余弦定理求得a2+c2的值,

解答 解:(1)∵角A与390°的终边相同,0°<A<180°,∴A=30°
∵cosB=$\frac{4}{5}$,∴$sinB=\frac{3}{5}$,
在△ABC中,由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,得a=$\frac{bsinA}{sinB}=\frac{5}{2}$;
(2)由S△ABC=$\frac{1}{2}acsinB=3$,得ac=10,
在△ABC中,由余弦定理得:b2=a2+c2-2ac•cosB
⇒a2+c2=b2+2ac•cosB=9+2×$10×\frac{4}{5}$=25.

点评 本题主要考查了正弦定理和余弦定理的应用.正弦定理和余弦定理是解三角函数常用的方法,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥S-ABCD的底面是正方形,每条侧棱长都是底面边长的$\sqrt{2}$倍,P为侧棱SD上的点.
(1)若SD⊥平面PAC,求二面角P-AC-D的大小;
(2)侧棱SC上是否存在一点E,使得BE⊥SD,若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+x)dx=(  )
A.π+1B.π-1C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,M,N分别为B1C,A1A上的点,且$\frac{{B}_{1}M}{MC}$=$\frac{{A}_{1}N}{NA}$=$\frac{1}{3}$
(Ⅰ)证明:MN∥平面ABC
(Ⅱ)若MN⊥B1C,A1A=BC=2AB=2,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某大学中文系一、二、三、四年级的学生数之比为5:2:3:4,要用分层抽样的方法从该系所有本科生中抽取一个容量为280的样本,则应抽取二年级的学生为(  )
A.40人B.60人C.80人D.20人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$
(1)求C的普通方程和l的倾斜角
(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在斜三角形ABC中,$\frac{tanA+tanB+tanC}{2tanA•tanB•tanC}$=(  )
A.1B.$\frac{1}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设P为曲线C1:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1的任意一点,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ-2sinθ)=15,则点P到直线l的距离的最小值$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,∠A=60°,∠B=45°,BC=$\sqrt{3}$,那么AC等于(  )
A.$\sqrt{6}$B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案