精英家教网 > 高中数学 > 题目详情
18.设p是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{9}$=1上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=5,则|PF2|=(  )
A.1或5B.1或9C.1D.9

分析 根据题意,由双曲线的方程可得其渐近线方程,结合题意可得$\frac{3}{a}$=$\frac{3}{2}$,解可得a的值,可得双曲线的标准方程,由|PF1|=5分析可得P在双曲线的左支上,由双曲线的定义即可得答案.

解答 解:根据题意,双曲线的方程为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{9}$=1,则其渐近线方程为y=±$\frac{3}{a}$x,
又由双曲线的一条渐近线方程为3x-2y=0,即y=$\frac{3}{2}$x,
则有$\frac{3}{a}$=$\frac{3}{2}$,解可得a=2,
则双曲线的方程为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,其中a=2,b=3,则c=$\sqrt{4+9}$=$\sqrt{13}$,
若|PF1|=5,则P在双曲线的左支上,
则|PF2|=5+2a=9;
故选:D.

点评 本题考查双曲线的几何性质,涉及双曲线的标准方程,由双曲线的渐近线的方程求出a是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+x)dx=(  )
A.π+1B.π-1C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在斜三角形ABC中,$\frac{tanA+tanB+tanC}{2tanA•tanB•tanC}$=(  )
A.1B.$\frac{1}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设P为曲线C1:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1的任意一点,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ-2sinθ)=15,则点P到直线l的距离的最小值$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数 f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)设α,β为锐角,cosα=$\frac{{\sqrt{5}}}{5}$,sin(α+β)=$\frac{{22\sqrt{5}}}{65}$,求 f($\frac{β}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,右焦点为F(1,0).
(1)求椭圆E的标准方程;
(2)设点O为坐标原点,过点F作直线l与椭圆E交于M,N两点,若$\overrightarrow{OM}•\overrightarrow{ON}=0$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了解高一年级1200名学生的视力情况,采用系统抽样的方法,从中抽取容量为60的样本,则分段间隔为(  )
A.10B.20C.40D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,∠A=60°,∠B=45°,BC=$\sqrt{3}$,那么AC等于(  )
A.$\sqrt{6}$B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,E为AD的中点,AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(Ⅰ)求证:平面PCD⊥平面PAD;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱CD上是否存在点M,使得AM⊥平面PBE?若存在,求出$\frac{DM}{DC}$的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案