精英家教网 > 高中数学 > 题目详情
10.为了解高一年级1200名学生的视力情况,采用系统抽样的方法,从中抽取容量为60的样本,则分段间隔为(  )
A.10B.20C.40D.60

分析 利用系统抽样定义直接求解.

解答 解:为了解高一年级1200名学生的视力情况,
采用系统抽样的方法,从中抽取容量为60的样本,
则分段间隔为:$\frac{1200}{60}$=20.
故选:B.

点评 本题考查抽样分段间隔的求法,是基础题,解题是要认真审题,注意系统抽样定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:
(1)试估计这组样本数据的众数和中位数(结果精确到0.1);
(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?
(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x元/件(1≤x≤2),则新增的年销量P=4(2-x)2(万件).
(1)写出今年商户甲的收益f(x)(单位:万元)与x的函数关系式;
(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设p是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{9}$=1上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=5,则|PF2|=(  )
A.1或5B.1或9C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设α,β是两个不同的平面,m,n,l 是三条不同的直线,下列命题中正确的是(  )
A.若α∩β=l,m?α,n?β,则m,n一定相交B.若α∥β,m?α,n?β,则m,n一定平行
C.若α∥β,m∥α,n∥β,则m,n一定平行D.若α⊥β,m⊥α,n⊥β,则m,n一定垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点为F,右顶点为A,一条渐近线方程为y=2$\sqrt{2}$x,且|AF|=2,则该双曲线的实轴长为(  )
A.4B.2$\sqrt{3}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),且椭圆Γ的上顶点到直线$\sqrt{3}$x+y+1=0的距离等于1.
(1)求椭圆Γ的标准方程;
(2)过点P(1,2)作两条倾斜角互补的两直线l1,l2分别交椭圆Γ于A,B,C,D四点,求kAC+kBD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若等比数列{an}的前n项和Sn=3n-1,则其公比为(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m、n为两条不同的直线,α、β、γ为三个不同的平面,下列结论正确的是(  )
A.若m∥α,n∥α,则m∥nB.若α∥γ,β∥γ,则α∥β
C.若α⊥β,m∥α,则m⊥βD.若α⊥β,m?α,n?β,则m⊥n

查看答案和解析>>

同步练习册答案