精英家教网 > 高中数学 > 题目详情
20.已知m、n为两条不同的直线,α、β、γ为三个不同的平面,下列结论正确的是(  )
A.若m∥α,n∥α,则m∥nB.若α∥γ,β∥γ,则α∥β
C.若α⊥β,m∥α,则m⊥βD.若α⊥β,m?α,n?β,则m⊥n

分析 在A中,m与n相交、平行或异面;在B中,由面面平行的判定定理得α∥β;在C中,m与β相交、平行或m?β;在D中,m与n相交、平行或异面.

解答 解:由m、n为两条不同的直线,α、β、γ为三个不同的平面,知:
在A中,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;
在B中,若α∥γ,β∥γ,则由面面平行的判定定理得α∥β,故B正确;
在C中,若α⊥β,m∥α,则m与β相交、平行或m?β,故C错误;
在D中,若α⊥β,m?α,n?β,则m与n相交、平行或异面,故D错误.
故选:B.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.为了解高一年级1200名学生的视力情况,采用系统抽样的方法,从中抽取容量为60的样本,则分段间隔为(  )
A.10B.20C.40D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在等腰梯形ABCD中,AD∥BC,AD=2,BC=2($\sqrt{2}$+1),DE⊥BC于E,DE=$\sqrt{10}$,现将梯形ABCD沿DE折成二面角B-DE-C(如图2),使得AC与平面BCE所成的角为45°

(Ⅰ)求证:AD∥平面BCE;
(Ⅱ)求二面角A-CE-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,E为AD的中点,AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(Ⅰ)求证:平面PCD⊥平面PAD;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱CD上是否存在点M,使得AM⊥平面PBE?若存在,求出$\frac{DM}{DC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的表面积为(  )
A.$\frac{3}{2}π$B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的不等式|2x+1|-|2x-2|<a2-4a有实数解,则实数a的取值范围为{x|a<1,或 a>3 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出如图所示放置的直角三角形的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,DD1⊥底面ABCD,E是DD1的中点
(Ⅰ)求证:BD1∥平面AEC
(Ⅱ)求证:平面AEC⊥平面BDD1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=Atan(ωx+φ)的周期T=$\frac{π}{|ω|}$.

查看答案和解析>>

同步练习册答案