精英家教网 > 高中数学 > 题目详情
1.已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x元/件(1≤x≤2),则新增的年销量P=4(2-x)2(万件).
(1)写出今年商户甲的收益f(x)(单位:万元)与x的函数关系式;
(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.

分析 (1)由题意可得:f(x)=[1+4(2-x)2](x-1),1≤x≤2.
(2)甲往年以单价2元/件销售该商品时,年销量为1万件,可得收益为1万元.f′(x)=(2x-3)(6x-11),利用导数研究其单调性即可得出结论.

解答 解:(1)由题意可得:f(x)=[1+4(2-x)2](x-1),1≤x≤2.
(2)甲往年以单价2元/件销售该商品时,年销量为1万件,可得收益为1万元.
f′(x)=8(x-2)(x-1)+1+4(2-x)2=12x2-40x+33=(2x-3)(6x-11),
可得当x∈$[1,\frac{3}{2})$时,函数f(x)单调递增;当x∈$(\frac{3}{2},\frac{11}{6})$时,函数f(x)单调递减;
当x∈$(\frac{11}{6},2]$时,函数f(x)单调递增.
∴x=$\frac{3}{2}$时,函数f(x)取得极大值,$f(\frac{3}{2})$=1;又f(2)=1.
∴当x=$\frac{3}{2}$或x=2时,函数f(x)取得最大值1(万元).
因此商户甲今年采取降低单价提高销量的营销策略,不能获得比往年更大的收益.

点评 本题考查了利用导数研究函数的单调性极值与最值及其实际应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知锐角三角形ABC的三个内角A,B,C的对边分别为a,b,c,若sinA=$\frac{{\sqrt{7}}}{4}$,sinC=$\frac{{3\sqrt{7}}}{8}$
(1)求sinB的值;
(2)若|${\overrightarrow{AC}$+$\overrightarrow{BC}}$|=2$\sqrt{23}$,求BC边上的中线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某大学中文系一、二、三、四年级的学生数之比为5:2:3:4,要用分层抽样的方法从该系所有本科生中抽取一个容量为280的样本,则应抽取二年级的学生为(  )
A.40人B.60人C.80人D.20人

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在斜三角形ABC中,$\frac{tanA+tanB+tanC}{2tanA•tanB•tanC}$=(  )
A.1B.$\frac{1}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线的倾斜角的范围是a∈[$\frac{π}{4}$,$\frac{π}{2}$],则此直线的斜率k的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设P为曲线C1:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1的任意一点,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ-2sinθ)=15,则点P到直线l的距离的最小值$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数 f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)设α,β为锐角,cosα=$\frac{{\sqrt{5}}}{5}$,sin(α+β)=$\frac{{22\sqrt{5}}}{65}$,求 f($\frac{β}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了解高一年级1200名学生的视力情况,采用系统抽样的方法,从中抽取容量为60的样本,则分段间隔为(  )
A.10B.20C.40D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在等腰梯形ABCD中,AD∥BC,AD=2,BC=2($\sqrt{2}$+1),DE⊥BC于E,DE=$\sqrt{10}$,现将梯形ABCD沿DE折成二面角B-DE-C(如图2),使得AC与平面BCE所成的角为45°

(Ⅰ)求证:AD∥平面BCE;
(Ⅱ)求二面角A-CE-B的平面角的正切值.

查看答案和解析>>

同步练习册答案