分析 (Ⅰ)设“男生甲或女生乙都不被选中”为事件C,求出P(C),由此能求出男生甲或女生乙被选的概率;
(Ⅱ)由题设知,ξ的可有取值为0,1,2,分别求出P(ξ=0),P(ξ=1),P(ξ=2),由此能求出ξ的分布列及数学期望.
解答 解:(Ⅰ)设“男生甲或女生乙都不被选中”为事件C,则P(C)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}=\frac{1}{5}$,
∴男生甲或女生乙被选的概率为$P(\overline{C})=1-P(C)=\frac{4}{5}$;
(Ⅱ)由题设知,ξ的所有可能取值为0,1,2,
P(ξ=0)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}=\frac{1}{5}$,P(ξ=1)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}=\frac{3}{5}$,P(ξ=2)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}=\frac{1}{5}$.
∴ξ的分布列为:
| ξ | 0 | 1 | 2 |
| p | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
点评 本题考查离散型随机变量的分布列和数学期望的求法,注意概率知识的合理运用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{6}$(8+π) | B. | $\frac{\sqrt{3}}{6}$(9+2π) | C. | $\frac{\sqrt{3}}{6}$(8+2π) | D. | $\frac{\sqrt{3}}{6}$(6+π) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数学学期综合成绩 | 96 | 92 | 91 | 91 | 81 | 76 | 82 | 79 | 90 | 93 |
| 物理学期综合成绩 | 91 | 91 | 90 | 92 | 90 | 78 | 91 | 71 | 78 | 84 |
| 学生序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学学期综合成绩 | 68 | 72 | 79 | 70 | 64 | 61 | 63 | 66 | 53 | 59 |
| 物理学期综合成绩 | 79 | 78 | 62 | 72 | 62 | 60 | 68 | 72 | 56 | 54 |
| p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 18 | C. | 24 | D. | 36 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com