| A. | (-∞,-2)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-2,0)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
分析 根据积函数的求导法则可设F(x)=(x2+1)f(x),依题意可知可判断函数F(x)=(x2+1)f(x)在(0,+∞)内单调递减;再由f(2)=f(-2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(-∞,0)内的正负性.则f(x)>0的解集即可求得.
解答 解:令F(x)=(x2+1)f(x),
则F′(x)=(x2+1)f′(x)+2xf(x),
∵当x>0时,(x2+1)f′(x)+2xf(x)<0,
∴当x>0时,F′(x)<0,
∴F(x)=(x2+1)f(x)在(0,+∞)上单调递减,
∵f(x)是定义在R上的奇函数,f(2)=0,
∴f(-2)=0,
∴当x>2时,F(x)=(x2+1)f(x)<0,
∴f(x)>0;
又F(-x)=(x2+1)f(-x)=-(x2+1)f(x)=-F(x),
∴F(x)=(x2+1)f(x)为奇函数,又x>0时,F(x)=(x2+1)f(x)在(0,+∞)上单调递减,
∴x<0时,F(x)=(x2+1)f(x)在(-∞,0)上单调递减,
∵f(-2)=0,
∴当-2<x<0时,F(x)=(x2+1)f(x)<0,从而f(x)<0.
综上可得:当-2<x<0或x>2时f(x)<0.
∴不等式f(x)<0的解集是(-2,0)∪(2,+∞).
故选:C.
点评 本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征,熟练掌握导数的运算法则是解题的关键,考查运算能力,属难题.
科目:高中数学 来源: 题型:解答题
| x | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 |
| y | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 7 | C. | $\sqrt{29}$ | D. | $\sqrt{37}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 2 | C. | $\frac{4}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com