精英家教网 > 高中数学 > 题目详情
9.已知点M的柱坐标为($\sqrt{2}$,$\frac{π}{4}$,3),点N的球坐标为(2,$\frac{π}{4}$,$\frac{π}{2}$),求线段MN的长度.

分析 将M,N的坐标转化为直角坐标,再计算距离.

解答 解:点M的直角坐标为(1,1,3),点N的直角坐标为(0,$\sqrt{2}$,$\sqrt{2}$).
∴|MN|=$\sqrt{{1}^{2}+(\sqrt{2}-1)^{2}+(3-\sqrt{2})^{2}}$=$\sqrt{15-8\sqrt{2}}$.

点评 本题考查了球坐标,柱坐标与直角坐标的转化,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.有编号为1,2,3,4,5的五个小球和编号为1,2,3,4的四个盒子,现把球全部放入盒子中,
(1)若恰有一个盒子不放球,有多少种放法?
(2)若每个盒子都不空,恰有两个小球放入编号相同的盒子,有多少种放法?
(3)若每个盒子都不空,且编号为偶数的小球只放入编号为偶数的盒子中,有多少种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*
(Ⅰ)求证:数列{an}为等差数列,并求其通项公式;
(Ⅱ)设bn=an•2-n,Tn为数列{bn}的前n项和.
①求Tn的表达式;
②求使Tn>2的n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知各项均为正数的数列{an},{bn}满足a1=b1=1,b${\;}_{n+1}^{2}$=bnbn+2,且9b${\;}_{3}^{2}$=b2b6,若$\frac{{b}_{n+1}}{{a}_{n+1}}$=$\frac{{b}_{n}}{{a}_{n}+2{b}_{n}}$,则(  )
A.数列{$\frac{{a}_{n}}{{b}_{n}}$}是等比数列,且an=$\frac{2n-1}{{3}^{n}}$
B.数列{$\frac{{a}_{n}}{{b}_{n}}$}是等差数列,且an=$\frac{2n-1}{{3}^{n}}$
C.数列{$\frac{{a}_{n}}{{b}_{n}}$}是等比数列,且an=(2n-1)•3n-1
D.数列{$\frac{{a}_{n}}{{b}_{n}}$}是等差数列,且an=(2n-1)•3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}满足a2=0,a6+a8=-10.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
(3)求数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a≠0,n是大于1的自然数,${({1+\frac{x}{a}})^n}$的展开式为a0+a1x+a2x2+…+anxn.若a1=3,a2=4,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=2x-2x的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x(1-x)7=a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7+a8x8,则a1+3a2+7a3+15a4+31a5+63a6+127a7+255a8=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C的对边分别是a,b,c,已知sinB=$\frac{5}{13}$,且满足sin2B=sinA•sinC,accosB=12,则a+c=3$\sqrt{7}$.

查看答案和解析>>

同步练习册答案