精英家教网 > 高中数学 > 题目详情
已知双曲线的渐近线为y=±
3
x,焦点坐标为(-4,0),(4,0),则双曲线方程为(  )
A、
x2
4
-
y2
12
=1
B、
x2
2
-
y2
4
=1
C、
x2
24
-
y2
8
=1
D、
x2
8
-
y2
24
=1
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设双曲线方程为:
x2
a2
-
y2
b2
=1,则c=4,又渐近线方程为y=±
b
a
x,即可得到a,b的方程,解得即可.
解答: 解:设双曲线方程为:
x2
a2
-
y2
b2
=1
则c=4,
又渐近线方程为y=±
b
a
x,
即有
b
a
=
3
,又c2=a2+b2=16.
解得,a=2,b=2
3

x2
4
-
y2
12
=1.
故选A.
点评:本题考查双曲线的方程和性质,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2(2m-1)x+5m2-2m+4在[0,1]上的最小值为g(m);
(1)求g(m)的解析式;
(2)若m∈[-2,0],设g(m)的最小值为M,计算log19
5
(1+log5M)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x
+
a
x2
(a∈R).
(1)若a=1,求函数f(x)的极值;
(2)若f(x)在[1,+∞)内为单调增函数,求实数a的取值范围;
(3)对于n∈N*,求证:
n
i=1
i
(i+1)2
<ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2x+3-x2>0的解集是(  )
A、{x|-1<x<3}
B、{x|x>3或x<-1}
C、{x|-3<x<1}
D、{x|x>1或x<-3}

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
y2
3
-x2
=1的渐近线方程为(  )
A、y=±
3
B、y=±
3
x
C、y=±
3
3
D、y=±
3
3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在y轴上的椭圆
x2
10
+
y2
m
=1的长轴长为8,则m等于(  )
A、4B、8C、10D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA丄平面ABCD,底面ABCD是菱形AB=2,∠BAD=60°.
(Ⅰ)求证:BD丄平面PAC;
(Ⅱ)若PA=Ab,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2sinA,cosA),
b
=(cosA,2
3
cosA),
a
b
=
3
,若A∈[0,
π
2
],则A=(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

同步练习册答案