精英家教网 > 高中数学 > 题目详情
如图,动圆D过定点A(0,2),圆心D在抛物线x2=4y上运动,MN为圆D在x轴上截得的弦,当圆心D运动时,记|AM|=m,|AN|=n.
(Ⅰ)求证:|MN|为定值;
(Ⅱ)求
n
m
+
m
n
的取值范围.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)设圆心(a,
a2
4
),则圆为(x-a)2+(y-
a2
4
2=a2+(2-
a2
4
2,由此能证明|MN|=4.
(Ⅱ)令∠MAN=θ,由余弦定理,得16=m2+n2-2mncosθ,又由S△AMN=
1
2
mnsinθ-
1
2
|MN|yA
=4,得
16
mn
=2sinθ
,由此能求出
n
m
+
m
n
的取值范围.
解答: (Ⅰ)证明:设圆心(a,
a2
4
),
则圆为(x-a)2+(y-
a2
4
2=a2+(2-
a2
4
2
当y=0时,x=a±2,
∵MN为圆D在x轴上截得的弦,
∴|MN|=4.
(Ⅱ)解:令∠MAN=θ,
由余弦定理,得16=m2+n2-2mncosθ,
又由S△AMN=
1
2
mnsinθ-
1
2
|MN|yA

=
1
2
×4×2=4

16
mn
=2sinθ

m
n
+
n
m
=2(sinθ+cosθ)
=2
2
sin(θ+
π
4
),
m
n
+
n
m
≥2
∴2≤
n
m
+
m
n
≤2
2

n
m
+
m
n
的取值范围是[2,2
2
].
点评:本题考查圆的弦长为定值的证明,考查代数式的取值范围的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=f(x)的定义域为[4,7],则y=f(x+3)的定义域为(  )
A、[1,4]
B、[7,10]
C、(1,4)
D、(7,10)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,O是对角线AC、BD的交点,N是线段OD的中点,AN的延长线于CD交于点E,则下列说法错误的是(  )
A、
AC
=
AB
+
AD
B、
BD
=
AD
-
AB
C、
AO
=
1
2
AB
+
1
2
AD
D、
AE
=
1
4
AB
+
AD

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,函数y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的图象与y轴交于点(0,1).
(1)求φ的值;
(2)若x∈[0,1],求函数y=2sin(πx+φ)的最值,及取得最值时x的值;
(3)设P是图象上的最高点,M、N是图象与x轴的交点,求
PM
PN
的夹角.的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=
k
2
x2+x+1.
(1)当k=1时,证明:f(x)≥g(x)-
x2
2

(2)若f(x)≥g(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1).
(1)求证数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式an和bn
(3)设cn=
2bn
anan+1

①判定数列{cn}的单调性,并求数列{cn}的最大值.
②求
lim
n→∞
(c1+c2+…+cn).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面PAD⊥平面ABCD,四边形ABCD是矩形,AB=1,AD=2,P点在以AD为直径的半圆弧上运动(不包括端点)
(Ⅰ)证明:PA⊥PC;
(Ⅱ)当二面角P─BC─D达到最大值时,求直线AD与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.
(1)求证A1A⊥A1C;
(2)若A1A=A1C=2,求三棱锥B1-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M有特征值λ1=8及对应特征向量α1=
1
1
,且矩阵M对应的变换将点(1,-1)变换成(4,0),求矩阵M的另一个特征值.

查看答案和解析>>

同步练习册答案