精英家教网 > 高中数学 > 题目详情
6.已知实数a>0,函数$f(x)=\left\{\begin{array}{l}{e^{x-1}}+a,x<0\\{e^{x-}}+\frac{a}{2}{x^2}-(a+1)x+a,x≥0\end{array}\right.$,其中e是自然对数的底数,若函数y=f(x)与y=f[f(x)]有相同的值域,则实数a的取值范围是(  )
A.(0,2]B.[1,2]C.(0,1]D.[1,e]

分析 利用导数结合图象求出函数f(x)的值域,再由函数y=f(x)与y=f[f(x)]有相同的值域可得$\frac{a}{2}≤1$,从而求得a的取值范围.

解答 解:当x<0时,f(x)在(-∞,0)上单调递增,且x→-∞时,f(x)→a;
当x≥0时,f′(x)=ex-1+ax-a-1,
∴f′(x)是增函数,且f′(1)=0,
∴当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,
∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
又f(1)=$\frac{a}{2}$,当x→+∞时,f(x)→+∞,
作出f(x)的大致函数图象如图所示:

由图象可知f(x)≥$\frac{a}{2}$,即函数y=f(x)的值域为[$\frac{a}{2}$,+∞).
∵y=f[f(x)]的值域也是[$\frac{a}{2}$,+∞).
∴$\frac{a}{2}≤1$,得a≤2.
∴实数a的取值范围是(0,2].
故选:A.

点评 本题考查了函数零点与函数图象的关系,函数单调性的判断与极值计算,体现了数形结合的解题思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知全集为R,集合M={-1,0,1,5},N={x|x2-x-2<0},则M∩N=(  )
A.{0,1,5}B.{-1,0,1}C.{0,1}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=$\frac{a+1}{2}{x^2}$-ax-lnx.
(1)求函数f(x)的极值;
(2)求证:x-$\frac{lnx}{x}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=3${\;}^{\frac{4}{3}}$,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log2$\frac{1}{3}$,那么(  )
A.b<a<cB.a<b<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设等差数列{an}满足$\frac{si{n}^{2}{a}_{2}-co{s}^{2}{a}_{2}+co{s}^{2}{a}_{2}co{s}^{2}{a}_{7}-si{n}^{2}{a}_{2}si{n}^{2}{a}_{7}}{sin({a}_{1}+{a}_{8})}$=1,公差d∈(-1,0),若当且仅当n=11时,数列{an}的前n项和Sn取得最大值,则首项a1的取值范围是(  )
A.($\frac{9π}{10}$,π)B.[π,$\frac{11π}{10}$]C.[$\frac{9π}{10}$,π]D.(π,$\frac{11π}{10}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,圆 C以点C(2,$\frac{π}{3}$)为圆心,2为半径.在以极点为原点,以极轴为x轴正半轴且单位长度一样的直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(2,$\sqrt{3}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.规定A${\;}_{x}^{m}$=x•(x-1)…(x-m+1)(其中x∈R,m∈N*),且A${\;}_{x}^{0}$=1,这是排列数A${\;}_{n}^{m}$(n,m是正整数,且m≤n)的一种推广.
(1)求A${\;}_{1.5}^{4}$的值
(2)排列数的两个性质:①A${\;}_{n}^{m}$=nA${\;}_{n-1}^{m-1}$,②A${\;}_{n}^{m}$+mA${\;}_{n}^{m-1}$=A${\;}_{n+1}^{m}$.是否能推广到A${\;}_{x}^{m}$的情形?若能,写出推广的形式并给予证明;若不能,说明理由;
(3)求函数A${\;}_{x+1}^{3}$在区间[0,a](a>0,且a∈R)上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=log2(x+1)的定义域是(  )
A.(0,+∞)B.(-1,+∞)C.(1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合 A={x∈R|(x-1)(x-3)≤0},B={-1,1,2,3},则A∩B等(  )
A.{1,2}B.{2,3}C.{1,2,3}D.{-1,1,2,3}

查看答案和解析>>

同步练习册答案