精英家教网 > 高中数学 > 题目详情
13.已知集合 A={x∈R|(x-1)(x-3)≤0},B={-1,1,2,3},则A∩B等(  )
A.{1,2}B.{2,3}C.{1,2,3}D.{-1,1,2,3}

分析 先分别求出集合A,B,由此利用交集定义能求出A∩B.

解答 解:∵集合 A={x∈R|(x-1)(x-3)≤0}={x|1≤x≤3},
B={-1,1,2,3},
∴A∩B={1,2,3}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知实数a>0,函数$f(x)=\left\{\begin{array}{l}{e^{x-1}}+a,x<0\\{e^{x-}}+\frac{a}{2}{x^2}-(a+1)x+a,x≥0\end{array}\right.$,其中e是自然对数的底数,若函数y=f(x)与y=f[f(x)]有相同的值域,则实数a的取值范围是(  )
A.(0,2]B.[1,2]C.(0,1]D.[1,e]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数);直线l1的普通方程为x+1=0,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C与直线l1的极坐标方程;
(2)若直线l2的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),且直线l2与圆C交于O、P两点(O为坐标原点),直线l2与直线l1交于点Q,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某单位需要从甲、乙2人中选拔一人参加新岗位培训,特别组织了5个专项的考试,成绩统计如下:
第一项第二项第三项第四项第五项
甲的成绩8182799687
乙的成绩9476809085
(1)根据有关统计知识,回答问题:若从甲、乙2人中选出1人参加新岗位培训,你认为选谁合适,请说明理由;
(2)根据有关概率知识,解答以下问题:
从甲、乙2人的成绩中各随机抽取一个,设抽到甲的成绩为x,抽到乙的成绩为y.用A表示满足条件|x-y|≤2的事件,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题的否定是真命题的是(  )
A.?x0∈R,x${\;}_{0}^{2}$+2x0+2=0B.若f(x)是奇函数,则f(-x)是奇函数
C.?x∈R,x2-x+$\frac{1}{4}$≥0D.任意两个等边三角形都是相似的

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=log0.5(x2-3x-10)的递增区间是(  )
A.(-∞,-2)B.(5,+∞)C.(-∞,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=f(x)满足2f(x)-f($\frac{1}{x}$)=x,则函数f(x)=$\frac{2}{3}x+\frac{1}{3x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种求多项式值的简化算法,其求一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0值的算法是:v0=an,v1=v0x+an-1,v2=v1x+an-2,v3=v2x+an-3,…,vn=vn-1x+a0,vn为所求f(x)的值,利用秦九韶算法,计算f(x)=2x5+x4+3x3+2x2+x+1当x=2时的值时,v2的值为(  )
A.2B.5C.13D.115

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(sinωx,$\sqrt{3}$cosωx),$\overrightarrow{b}$=(cosωx,cosωx)(ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-$\frac{\sqrt{3}}{2}$的最小正周期为π.
(1)求ω的值,并求f(x)的单调递增区间;
(2)将y=f(x)图象向右平移$\frac{π}{3}$个单位长度,再将所得图象上所有点纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象,若g(x)+m-1=0在[0,$\frac{π}{2}$]有只有一个实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案