精英家教网 > 高中数学 > 题目详情
4.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数);直线l1的普通方程为x+1=0,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C与直线l1的极坐标方程;
(2)若直线l2的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),且直线l2与圆C交于O、P两点(O为坐标原点),直线l2与直线l1交于点Q,求|PQ|.

分析 (1)由圆的参数方程消去参数求出圆C的普通方程,由此能求出圆C极坐标方程;由直线l的直角坐标方程,能求出直线l的极坐标方程.
(2)直线l2:θ=$\frac{π}{3}$的直角坐标方程为y=$\sqrt{3}$x,联立方程组分别求出P和Q的坐标,由此利用两点间距离公式能求出线段PQ的长.

解答 解:(1)∵圆C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),
∴圆C的普通方程为(x-2)2+y2=4,即x2+y2-4x=4,
∴圆C极坐标方程为ρ2-4ρ-4=0.
∵直线l的方程为x+1=0,
∴直线l的极坐标方程为ρcosθ+1=0.
(2)直线l2:θ=$\frac{π}{3}$的直角坐标方程为y=$\sqrt{3}$x,
联立 $\left\{\begin{array}{l}{{(x-2)}^{2}{+y}^{2}=4}\\{y=\sqrt{3}x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=\sqrt{3}}\end{array}\right.$,
即O(0,0),P(1,$\sqrt{3}$),
联立$\left\{\begin{array}{l}{x+1=0}\\{y=\sqrt{3}x}\end{array}\right.$,得Q(-1,-$\sqrt{3}$),
∴线段PQ的长|PQ|=$\sqrt{4+12}$=4.

点评 本题考查圆和直线的极坐标方程的求法,考查线段长的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=$\frac{a+1}{2}{x^2}$-ax-lnx.
(1)求函数f(x)的极值;
(2)求证:x-$\frac{lnx}{x}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.规定A${\;}_{x}^{m}$=x•(x-1)…(x-m+1)(其中x∈R,m∈N*),且A${\;}_{x}^{0}$=1,这是排列数A${\;}_{n}^{m}$(n,m是正整数,且m≤n)的一种推广.
(1)求A${\;}_{1.5}^{4}$的值
(2)排列数的两个性质:①A${\;}_{n}^{m}$=nA${\;}_{n-1}^{m-1}$,②A${\;}_{n}^{m}$+mA${\;}_{n}^{m-1}$=A${\;}_{n+1}^{m}$.是否能推广到A${\;}_{x}^{m}$的情形?若能,写出推广的形式并给予证明;若不能,说明理由;
(3)求函数A${\;}_{x+1}^{3}$在区间[0,a](a>0,且a∈R)上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=log2(x+1)的定义域是(  )
A.(0,+∞)B.(-1,+∞)C.(1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3+bx2+cx在x=1处的切线方程为6x-2y-1=0,f′(x)为f(x)的导函数,g(x)=a•ex(a,b,c∈R,e为自然对数的底)
(1)求b,c的值;
(2)若?x∈(0,2),使g(x)=f′(x)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如表提供了某厂节能降耗技术改造后生产甲产品过程记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x3456
y2.5344.5
(1)已知产量x和能耗y呈线性关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式;$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\widehat{y}-\widehat{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某厂用甲、乙两种原料生产A,B两种产品,制造1t A,1t B产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:
原料每种产品所需原料(t)现有原
料数(t)
AB
2114
1318
利润(万元/t)53-
(1)在现有原料条件下,生产A,B两种产品各多少时,才能使利润最大?
(2)每吨B产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合 A={x∈R|(x-1)(x-3)≤0},B={-1,1,2,3},则A∩B等(  )
A.{1,2}B.{2,3}C.{1,2,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f1(x)=x$,\;{f_2}(x)=\frac{1}{x}\;,\;{f_3}(x)={x^3}\;,\;{f_4}(x)=\sqrt{x}$,中,奇函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案