| A. | ?x0∈R,x${\;}_{0}^{2}$+2x0+2=0 | B. | 若f(x)是奇函数,则f(-x)是奇函数 | ||
| C. | ?x∈R,x2-x+$\frac{1}{4}$≥0 | D. | 任意两个等边三角形都是相似的 |
分析 根据特称命题和全称命题的性质进行判断即可.
解答 解:A命题的否定是?x∈R,x2+2x+2≠0,∵x2+2x+2=(x+1)2+1≥1恒成立,则?x∈R,x2+2x+2≠0成立,故A正确,
B.命题的否定是若f(x)是奇函数,则f(-x)不是奇函数,错误,
C.命题的否定是?x0∈R,x${\;}_{0}^{2}$-x0+$\frac{1}{4}$<0,∵x${\;}_{0}^{2}$-x0+$\frac{1}{4}$=(x0-$\frac{1}{2}$)2≥0,则?x0∈R,x${\;}_{0}^{2}$-x0+$\frac{1}{4}$<0错误,
D.命题的否定是存在两个等边三角形不相似,错误,
故选:A
点评 本题主要考查命题的真假判断,根据含有量词的命题的否定进行判断是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{9π}{10}$,π) | B. | [π,$\frac{11π}{10}$] | C. | [$\frac{9π}{10}$,π] | D. | (π,$\frac{11π}{10}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 原料 | 每种产品所需原料(t) | 现有原 料数(t) | |
| A | B | ||
| 甲 | 2 | 1 | 14 |
| 乙 | 1 | 3 | 18 |
| 利润(万元/t) | 5 | 3 | - |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {2,3} | C. | {1,2,3} | D. | {-1,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com