精英家教网 > 高中数学 > 题目详情
10.两直线a,b和平面α,其中下列正确的命题是③
①若a∥b,a?α,则b∥α
②若a,b与α所成角相等,则a∥b
③若a⊥α,b⊥α,则a∥b
④若a⊥α,b⊥a,则b∥α

分析 利用线面平行、垂直的判定与性质,即可得出结论.

解答 解:①若a∥b,a?α,b?α,则b∥α,故不正确;
②若a,b与α所成角相等,则a∥b或a,b相交、异面,故不正确;
③若a⊥α,b⊥α,则a∥b,正确‘
④若a⊥α,b⊥a,则b∥α或b?α,故不正确.
故答案为:③.

点评 本题考查线面平行、垂直的判定与性质,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设方程(x-k)2+(y-1)2=-k2+k+2表示圆,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在递增等差数列{an}中,a1=2,a3是a1和a9的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{({n+1}){a_n}}}$,Sn为数列{bn}的前n项和,是否存在实数m,使得Sn<m对于任意的n∈N+恒成立?若存在,请求实数m的取值范围,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知平面α和两条不重合的直线m,n,有下列四个命题:
(1)若m∥α,n?α,则m∥n
(2)若m∥α,n∥α,则m∥n
(3)若m∥n,n?α,则m∥α
(4)若m∥n,m∥α,则n∥α或n?α
上述四个命题正确的是(4)(写序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,四棱锥P-ABCD中,∠BAD=∠ABC=90°,BC=2AD,△PAB和△PAD都是等边三角形,则异面直线CD与PB所成角的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a<-1<b<0<c<1,则下列不等式成立的是(  )
A.b2<c<a2B.ab+$\frac{1}{ab}$<cC.$\frac{1}{b}$<$\frac{1}{a}$<$\frac{1}{c}$D.b2>ab-bc+ac

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是$\sqrt{3}$,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列的{an}前n项和为Sn,且S3-2a2=3,S4=16;数列{bn}满足b1+2b2+3b3+…+nbn=(n-1)2n+1.
(1)求数列{an},{bn}的通项公式;
(2)记cn=an+(-1)nlog2bn,数列{cn}的前n项和为Tn(n∈N*),当n为奇数时,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:如图,平面α、β满足α∥β,A、C∈α,B、D∈β,E∈AB,F∈CD,AC与BD异面,且$\frac{AE}{EB}=\frac{CF}{FD}$.求证:EF∥β

查看答案和解析>>

同步练习册答案