精英家教网 > 高中数学 > 题目详情
2.如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是$\sqrt{3}$,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE的长;若不存在,说明理由.

分析 (I)连接AB1交A1B于点M,连接MD.利用中位线定理得出B1C∥MD,故而B1C∥平面A1BD;
(II)作CO⊥AB于点O,以O为坐标原点建立空间坐标系,设AE=a,分别求出平面B1C1E和平面A1BD的法向量,令两法向量垂直解出a.

解答 解:(I)连接AB1交A1B于点M,连接MD.
∵三棱柱ABC-A1B1C1是正三棱柱,∴四边形BAA1B1是矩形,
∴M为AB1的中点.
∵D是AC的中点,∴MD∥B1C.
又MD?平面A1BD,B1C?平面A1BD,
∴B1C∥平面A1BD.
(II)作CO⊥AB于点O,则CO⊥平面ABB1A1
以O为坐标原点建立空间直角坐标系,假设存在点E,设E(1,a,0).
∵AB=2,AA1=$\sqrt{3}$,D是AC的中点,∴A(1,0,0),B(-1,0,0),C(0,0,$\sqrt{3}$),A1(1,$\sqrt{3}$,0),B1(-1,$\sqrt{3}$,0),C1(0,$\sqrt{3}$,$\sqrt{3}$).
∴D($\frac{1}{2}$,0,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BD}$=($\frac{3}{2}$,0,$\frac{\sqrt{3}}{2}$),$\overrightarrow{B{A}_{1}}$=(2,$\sqrt{3}$,0).
设是平面A1BD的法向量为$\overrightarrow{{n}_{1}}$=(x,y,z),∴$\overrightarrow{{n}_{1}}⊥\overrightarrow{BD}$,$\overrightarrow{{n}_{1}}⊥\overrightarrow{B{A}_{1}}$,
∴$\left\{\begin{array}{l}{\frac{3x}{2}+\frac{\sqrt{3}z}{2}=0}\\{2x+\sqrt{3}y=0}\end{array}\right.$,令x=-$\sqrt{3}$,得$\overrightarrow{{n}_{1}}$=(-$\sqrt{3}$,2,3).
∵E(1,a,0),则$\overrightarrow{{C}_{1}E}$=(1,a-$\sqrt{3}$,-$\sqrt{3}$),$\overrightarrow{{C}_{1}{B}_{1}}$=(-1,0,-$\sqrt{3}$).
设平面B1C1E的法向量为$\overrightarrow{{n}_{2}}$=(x,y,z),∴$\overrightarrow{{n}_{2}}⊥\overrightarrow{{C}_{1}E}$,$\overrightarrow{{n}_{2}}⊥\overrightarrow{{C}_{1}{B}_{1}}$.
∴$\left\{\begin{array}{l}{x+(a-\sqrt{3})y-\sqrt{3}z=0}\\{-x-\sqrt{3}z=0}\end{array}\right.$,令z=-$\sqrt{3}$,得$\overrightarrow{{n}_{2}}$=(3,$\frac{6}{\sqrt{3}-a}$,-$\sqrt{3}$).
∵平面B1C1E⊥平面A1BD,∴$\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}$=0,
即-3$\sqrt{3}$+$\frac{12}{\sqrt{3}-a}$-3$\sqrt{3}$=0,解得a=$\frac{\sqrt{3}}{3}$.
∴存在点E,使得平面B1C1E⊥平面A1BD,且AE=$\frac{\sqrt{3}}{3}$.

点评 本题考查了线面平行的判定,面面垂直的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若sinAcosB=1一cosAsinB,则这个三角形是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设实数a<0,定义域为R的函数$f(x)=a{cos^2}x-bsinxcosx-\frac{a}{2}$的最大值是$\frac{1}{2}$,且$f(\frac{π}{3})=\frac{{\sqrt{3}}}{4}$,
(1)求a、b的值;
(2)求函数f(x)在$x∈[\frac{π}{4},\frac{3π}{4}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.两直线a,b和平面α,其中下列正确的命题是③
①若a∥b,a?α,则b∥α
②若a,b与α所成角相等,则a∥b
③若a⊥α,b⊥α,则a∥b
④若a⊥α,b⊥a,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin2x+$\sqrt{3}sinxcosx,({x∈R})$.
(1)求函数f(x)的最小正周期;
(2)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图是一个以△A1B1C1为底面的直角三棱柱被一平面截得的几何体,截面为△ABC,已知AA1=4,BB1=2,CC1=3,在边AB上是否存在一点O,使得OC∥平面A1B1C1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设全集U=R,集合A={x|x>0},B={x|x<1},则集合(∁UA)∩B=(  )
A.(-∞,0)B.(-∞,0]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}中,a1=1,且a2+a4=3(a3+1).
(1)求数列{an}的通项公式;
(2)设bn=log3a2+log3a3+log3a4+…+log3an+1,求数列{$\frac{1}{{b}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn,且a0+a1+a2+…+an=126,那么${({\sqrt{x}-\frac{1}{{\sqrt{x}}}})^n}$的展开式中的常数项为(  )
A.-15B.15C.20D.-20

查看答案和解析>>

同步练习册答案