精英家教网 > 高中数学 > 题目详情
17.过抛物线y2=4x的焦点作直线l,交抛物线于A、B两点.若线段AB的中点的横坐标为3,则AB的长度为(  )
A.8B.7C.6D.5

分析 线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知|AB|的值.

解答 解:由题设知知线段AB的中点到准线的距离为4,
设A,B两点到准线的距离分别为d1,d2
由抛物线的定义知:
|AB|=|AF|+|BF|=d1+d2=2×4=8.
故选:A.

点评 本题考查抛物线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,积累解题方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.正△ABC边长为1,P为其内部(不含边界)的任意点,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),则在平面直角坐标系内点(x,y)对应区域的面积为(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P1,P2,…P2015是抛物线y2=4x上的点,它们的横坐标依次为x1,x2,…,x2015,F是抛物线的焦点,若x1+x2+…+x2015=10,则|P1F|+|P2F|+…+|P2015F|=(  )
A.2015B.2025C.4030D.4040

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈R,若2a=5b=100,则$\frac{1}{a}+\frac{1}{b}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)找出一个等比数列{an},使得1,$\sqrt{2}$,4为其中的三项,并指出分别是{an}的第几项;
(2)证明:$\sqrt{2}$为无理数;
(3)证明:1,$\sqrt{2}$,4不可能为同一等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,x02+2ax0+2-a=0;若命题¬(p∧q)是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C对应的边分别是a,b,c.已知2bcosA=acosC+ccosA
(1)求角A的大小;
(2)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinBsinC的值.
(3)若2sin2$\frac{B}{2}+2{sin^2}\frac{C}{2}$=1,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,点A(-1,-2),B(2,3),D(-2,-1).
(Ⅰ)求平行四边形ABCD两条对角线AC、BD的长;
(Ⅱ)设实数m满足$(\overrightarrow{AB}+m\overrightarrow{OD})•\overrightarrow{OD}=0$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.由直线x=0,x=2,y=0与曲线y=ex所围成的封闭图形的面积为(  )
A.e2B.eC.e2-1D.e2+1

查看答案和解析>>

同步练习册答案