精英家教网 > 高中数学 > 题目详情
2.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,x02+2ax0+2-a=0;若命题¬(p∧q)是假命题,求实数a的取值范围.

分析 先求出命题p,q为真命题时a的范围,据复合函数的真假得到p,q中均为真,即可求出a的范围.

解答 解:p真,则a≤1,
q真,则△=4a2-4(2-a)≥0,
即a≥1或a≤-2,
∵命题¬(p∧q)是假命题,
∴p∧q为真命题,
∴p,q均为真命题,
∴$\left\{\begin{array}{l}{a≤1}\\{a≤-2,或a≥1}\end{array}\right.$,
∴a≤-2,或a=1
∴实数a的取值范围为a≤-2,或a=1.

点评 本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为(  )
A.a,b,c,d全都大于等于0B.a,b,c,d全为正数
C.a,b,c,d中至少有一个正数D.a,b,c,d中至多有一个负数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式$\frac{x-1}{x+2}$>0的解集是(-∞,-2)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在R上的函数f(x)既是奇函数,又是周期函数,且周期为$\frac{3}{2}$.当$x∈[0,\frac{3}{4}]$时,$f(x)=\frac{a+sinπx}{{\sqrt{2}+cosπx}}-bx$(a、b∈R),则 f(1)+f(2)+…+f(100)的值为$-\frac{{\sqrt{2}}}{2}+\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过抛物线y2=4x的焦点作直线l,交抛物线于A、B两点.若线段AB的中点的横坐标为3,则AB的长度为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=3sin(\frac{x}{2}+\frac{π}{6})+3$
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)若f(2α)-3=$\sqrt{2}$,求$cos(\frac{π}{3}-α)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1),则向量$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow{b}$=(  )
A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,若椭圆C上的一动点到右焦点的最短距离为$2-\sqrt{2}$,且右焦点到直线$x=\frac{a^2}{c}$的距离等于短半轴的长,已知P(4,0),过P的直线与椭圆交于M、N两点
(Ⅰ)求椭圆C的方程   
(Ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.$\int\begin{array}{l}1\\-1\end{array}\sqrt{1-{x^2}}\;dx$=$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案