精英家教网 > 高中数学 > 题目详情
12.如图,正方体ABCD-A1B1C1D1中,二面角A-B1D1-A1的正切值为$\sqrt{2}$.

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出二面角A-B1D1-A1的正切值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为1,
则A(1,0,0),B1(1,1,1),D1(0,0,1),
$\overrightarrow{A{B}_{1}}$=(0,1,1),$\overrightarrow{A{D}_{1}}$=(-1,0,1),
设平面AB1D1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=y+z=0}\\{\overrightarrow{n}•\overrightarrow{A{D}_{1}}=-x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,1),
平面A1B1D1的法向量$\overrightarrow{m}$=(0,0,1),
设二面角A-B1D1-A1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,sinθ=$\sqrt{1-(\frac{\sqrt{3}}{3})^{2}}=\frac{\sqrt{6}}{3}$,
∴tanθ=$\frac{\frac{\sqrt{6}}{3}}{\frac{\sqrt{3}}{3}}$=$\sqrt{2}$,
∴二面角A-B1D1-A1的正切值为$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查二面角的正切值的求法,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指
定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为(?p)∨(?q).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求适合下列条件的标准方程:
(1)焦点在x轴上,与椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$具有相同的离心率且过点(2,-$\sqrt{3}$)的椭圆的标准方程;
(2)焦点在y轴上,焦距是16,离心率$e=\frac{4}{3}$的双曲线标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥2\\ 2x+y≥2\\ x-y≤2\end{array}\right.$目标函数z=x-2y的最大值是(  )
A.-4B.2C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将y=cosx的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将图象沿x轴负方向平移$\frac{π}{4}$个单位,则所得图象的解析式为(  )
A.y=sinxB.y=-sin2xC.$y=cos({2x+\frac{π}{4}})$D.$y=cos({\frac{x}{2}+\frac{π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知幂函数y=f(x)的图象过点$(2\;,\;\;\sqrt{2})$,则$f({\frac{1}{3}})$的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{3}$C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线mx2+y2=1(m∈R)与椭圆${x^2}+\frac{y^2}{5}=1$有相同的焦点,则该双曲线的渐近线方程为(  )
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\frac{1}{3}x$D.y=±3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义2×2矩阵$[\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}]$=a1a4-a2a3,若f(x)=$[\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}]$,则f(x)(  )
A.图象关于(π,0)中心对称B.图象关于直线$x=\frac{π}{2}$对称
C.在区间$[-\frac{π}{6},0]$上单调递增D.周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.A是曲线ρ=3cosθ上任意一点,点A到直线ρcosθ=-1距离的最大值为(  )
A.$\frac{5}{2}$B.3C.4D.5

查看答案和解析>>

同步练习册答案