精英家教网 > 高中数学 > 题目详情
设二次函数f(x)=x2+bx+c(b,c∈R),已知不论α,β为何实数恒有f(sinα)≥0,f(2+cosβ)≤0
(1)求证:b+c+1=0;
(2)求证:c≥3;
(3)若函数f(sinα)的最大值为8,求b,c值.
考点:二次函数的性质
专题:函数的性质及应用
分析:(1)根据sinα∈[-1,1],2+cosβ∈[1,3],结合条件可得f(1)≥0,且f(1)≤0,即 f(1)=0恒成立,从而证得结论.
(2)根据f(3)≤0,以及b+c+1=0,证得c≥3.
(3)由题意可知:8=f(-1)=1-b+c①,再结合b+c=-1②,从而求得b,c值.
解答: 解:(1)∵sinα∈[-1,1],2+cosβ∈[1,3],又∵f(sinα)≥0,f(2+cosβ)≤0恒成立.∴f(1)≥0,且f(1)≤0,
即  f(1)=0恒成立.∴1+b+c=0.
(2)∵f(3)≤0,∴9+3b+c≤0,∴9+3(-1-c)+c≤0,∴c≥3.
(3)由题意可知:不论α,β为何实数恒有f(sinα)≥0,f(2+cosβ)≤0
且sinα∈[-1,1],2+cosβ∈[1,3],
故f(x)在[-1,1]上为减函数,∴8=f(-1)=1-b+c①,∵b+c=-1②,
由①,②可得 b=-4,c=3.
点评:本题主要考查正弦函数、余弦函数的值域,二次函数的性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线x2-y2=1经过伸缩变换T得到曲线
x2
16
-
y2
9
=1,那么直线x-2y+1=0经过伸缩变换T得到的直线方程为(  )
A、2x-3y+6=0
B、4x-6y+1=0
C、3x-8y+12=0
D、3x-8y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,D为PB中点,E为PC的中点,
(1)求证:BC∥平面ADE;
(2)求证:平面AED⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明函数f(x)=x2-1在(-∞,0)上是减函数;
(2)讨论函数f(x)=x+
1
x
在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(3x-1)=
5-9x
12x-3
,求y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=n2+kn(n∈N+),若数列{an}是单调递增数列,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=-
1
2

(1)求tanα的值;
(2)求
sin2α-2cos2α
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若
3sinα+5cosα
2sinα-7cosα
=
1
11
,求tanα;
(2)若tanα=3,求sin2α-sinαcosα+2cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+cos2x.
(1)求f(x)的最小正周期、最大值、最小值;    
(2)试说明f(x)是怎样由f(x)=sinx变换得来的.

查看答案和解析>>

同步练习册答案