精英家教网 > 高中数学 > 题目详情
设数列{an}的通项公式为an=n2+kn(n∈N+),若数列{an}是单调递增数列,求实数k的取值范围.
考点:数列的函数特性
专题:等差数列与等比数列
分析:数列{an}是单调递增数列,化简an+1>an(n∈N+)恒成立.通过分离参数即可得出.
解答: 解:∵数列{an}是单调递增数列,
∴an+1>an(n∈N+)恒成立.
又an=n2+kn(n∈N+),
∴(n+1)2+k(n+1)-(n2+kn)>0恒成立,
即2n+1+k>0,
∴k>-(2n+1)(n∈N+)恒成立.
当n=1时,-(2n+1)的最大值为-3,
∴k>-3即为所求范围.
点评:本题考查了单调递增数列、分离参数法,考查了推理能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是偶函数”是“φ=2kπ+
π
2
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
A
2
-
A
2
(2ωx+2φ),(A>0,ω>0,0<φ<
π
2
),且y=f(x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2),
(1)求 A,ω,φ的值;
(2)计算f(1)+f(2)+…+f(2013)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:x2-a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+bx+c(b,c∈R),已知不论α,β为何实数恒有f(sinα)≥0,f(2+cosβ)≤0
(1)求证:b+c+1=0;
(2)求证:c≥3;
(3)若函数f(sinα)的最大值为8,求b,c值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数且f(1)=1,若a、b∈[-1,1],a+b≠0,有
f(a)+f(b)
a+b
>0成立.
(1)判断函数f(x)在[-1,1]上是增函数还是减函数,并加以证明.
(2)解不等式f(x+
1
2
)>f(2x-
1
2
).
(3)若f(x)≤m2-2am+1对所有x∈[-1,1]、a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个漏斗形铁管接头,它的母线长是35cm,两底面直径分别是50cm和20cm,制作一万个这样的接头需要多少平方米的铁皮?(取π=3.1,结果准确到1m2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为第三象限角,若cos(α+
π
2
)=
1
5
,f(α)=
sin(
α
2
-α)
sin(α-π)
tan(α-π)
cos(3π-α)

(1)求cosα的值;
(2)求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),x∈R其中(A>0,ω>0,0<φ<
π
2
)的周期为π,且图象上一个最高点为M(
π
6
,2).
(1)求f(x)的解析式;
(2)当x∈[
π
12
π
2
]时,求f(x)的值域.

查看答案和解析>>

同步练习册答案